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Dynamic Heterogeneous Information Network
Embedding with Meta-path based Proximity
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Abstract—Heterogeneous information network (HIN) embedding aims at learning the low-dimensional representation of nodes while
preserving structure and semantics in a HIN. Existing methods mainly focus on static networks, while a real HIN usually evolves over
time with the addition (deletion) of multiple types of nodes and edges. Because even a tiny change can influence the whole structure and
semantics, the conventional HIN embedding methods need to be retrained to get the updated embeddings, which is time-consuming
and unrealistic. In this paper, we investigate the problem of dynamic HIN embedding and propose a novel Dynamic HIN Embedding
model (DyHNE) with meta-path based proximity. Specifically, we introduce the meta-path based first- and second-order proximities to
preserve structure and semantics in HINs. As the HIN evolves over time, we naturally capture changes with the perturbation of meta-
path augmented adjacency matrices. Thereafter, we learn the node embeddings by solving generalized eigenvalue problem effectively
and employ eigenvalue perturbation to derive the updated embeddings efficiently without retraining. Experiments show that DyHNE
outperforms the state-of-the-arts in terms of effectiveness and efficiency.

Index Terms—Dynamic Heterogeneous Information Network, Network Embedding, Social Network Analysis
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1 INTRODUCTION

H ETEROGENEOUS information network (HIN) has shed a
light on the analysis of network (graph) data, which consists

of multiple types of nodes connected by various types of edges
[1]. For example, the DBLP network has four types of nodes:
Author (A), Paper (P), Conference (C) and Term (T); and mul-
tiple types of relations: writing/written relations between authors
and papers, and publish/published relations between papers and
conferences, etc. Moreover, a meta-path, describing a composite
relation between nodes, is widely used to exploit rich semantics
in HINs [2]. In DBLP, the meta-path APA means the co-author
relation, while APCPA represents that two authors publish papers
in the same conference. Hence, a HIN contains much complex
structure and semantics and studying HIN is of great importance
for applications in practice.

Recently, HIN embedding, as a promising way of HIN analy-
sis, has attracted considerable attention [3], [4]. It aims at learning
the low-dimensional representation of nodes while preserving
the HIN structure and semantic information, so that various
downstream applications, such as node classification [5] and link
prediction [6], [7], can be benefited from HIN embedding. Several
HIN embedding methods have been proposed. For example, the
random walk based methods [8], [9], the decomposition based
methods [10], [11], [12], the deep neural network based methods
[7], [13], [14] and some task-specific methods [15], [16]. However,
all of these methods are designed for static HINs, i.e., the structure
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and semantics do not change over time. In reality, a HIN usually
exhibits high dynamics with the evolution of various types of
nodes and edges, e.g., the newly added (deleted) nodes or edges.
Moreover, the changes of nodes and edges in a dynamic HIN
may vary by types. Still taking the DBLP as an example, an
advisor collaborates with different students on different papers,
resulting in the continuous evolutions of co-author relations and
emerging papers. Besides, a large number of new papers are added
to the network while the number of conferences remains almost
unchanged each year.

Actually, the current HIN embedding methods can hardly
handle such complex evolutions effectively in a dynamic HIN.
Even with a tiny change in a HIN, these methods have to be re-
trained repeatedly at each time step, which is very time-consuming
and does not meet the realtime processing demand. Although
some methods are proposed to deal with dynamic networks [17],
[18], [19], they do not consider the heterogeneity of networks
and largely ignore various semantic relations in HINs. Directly
utilizing these methods for dynamic HINs will inevitably lose
some structure and semantics, and reduce the performance of
downstream tasks. Thus, an effective and efficient dynamic HIN
embedding method is highly desirable in a real HIN analysis
scenario.

Basically, there are two fundamental problems which need
to be carefully considered for dynamic HIN embedding. One
is how to effectively preserve the structure and semantics in a
dynamic HIN. Since the network structure and semantic relations
are the two most important and direct information in HINs, they
essentially ensure the effectiveness of the learned embeddings.
As the HIN evolves with a newly added node, the local structure
centered on this node will be changed, and such changes will
be gradually propagated across all the nodes via different meta-
paths, leading to changes in the global structure. Moreover, the
new node will not only establish direct links with neighborhoods,
but also establish complex relations with other nodes through
various meta-paths, which will inevitably influence the semantic
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relations in HINs. Thus, both structure and semantics will change
with the evolution of the dynamic HIN. Modeling the changes and
encoding the (high-order) structure and semantics in the learned
embeddings simultaneously are very critical yet challenging for an
effective dynamic HIN embedding method.

The other problem is how to efficiently update the node
embeddings without retraining on the whole HIN, when the HIN
evolves over time. For each time step, retraining a HIN embedding
method is the most straightforward way to get the optimal embed-
dings. However, apparently, this strategy is very time consuming,
especially when the change of network structure is very slight. In
the era of big data, retraining manner becomes unrealistic. These
problems motivate us to seek an effective and efficient method to
preserve the structure and semantics for dynamic HIN embedding.

In this paper, we propose a Dynamic Heterogeneous informa-
tion Network Embedding model (DyHNE) with meta-path based
proximity to effectively and efficiently learn the node embeddings.
Inspired by the perturbation theory [20] widely used for capturing
changes of a system, we learn the node embeddings by solving
the generalized eigenvalue problem and model the evolution of
the HIN with the eigenvalue perturbation. Along this line, we
firstly adopt meta-path augmented adjacency matrices to model
the typology of the HIN, and build a basic static HIN embedding
model (i.e., StHNE) to preserve both of the meta-path based
first- and second-order proximities. Thus we can better capture
the structure and semantics in dynamic HINs. For capturing the
evolution of the HIN, we then utilize the perturbations of multiple
meta-path augmented adjacency matrices to model the changes of
the structure and semantics of the HIN in a natural manner. Finally,
we employ the eigenvalue perturbation theory to incorporate the
changes and derive the node embeddings efficiently. In this way,
there is no need to retrain StHNE to get the optimal embeddings.

The contributions of our work are summarized as follows:
• For the first time, we study the problem of incrementally

learning node embeddings for dynamic HINs , which makes
the HIN embedding more practical in the real-world scenario.

• We initiate a static HIN embedding model (StHNE) to preserve
structure and semantics in a HIN. Based on StHNE, a dynamic
HIN embedding model (DyHNE) with meta-path based prox-
imity is proposed to derive the updated embeddings efficiently,
which can be applied to large-scale HINs with the linear time
complexity with respect to the number of nodes.

• We conduct comprehensive evaluations to show that our model
significantly outperforms several state-of-the-arts in terms of
effectiveness and efficiency.

The remainder of this paper is organized as follows. Section
2 introduces the related works. Section 3 describes notations used
in the paper and presents some definitions. Then, we propose the
dynamic HIN embedding method in Section 4. Experiments and
detailed analysis are reported in Section 5. Finally, we conclude
the paper in Section 6.

2 RELATED WORK

In this section, we first introduce the related methods of general
network embedding, and then discuss the recent works on HIN
embedding. At last, we briefly present recent works on dynamic
network embedding.

2.1 Network Embedding
Network embedding aims to to project a network into a low-
dimensional latent space while preserving the original structural

information and properties in networks [3], [4], [21]. In the
literature, network embedding can be traced back to the dimen-
sionality reduction technique, which typically learns the latent
low-dimensional vectors for nodes or edges by decomposing a
network [22], [23]. Ahmed et al. [24] propose to represent a
graph as a matrix where matrix elements correspond to edges
between nodes, and then conduct matrix factorization to learn
a low-dimensional representation of a graph. Isomap [22] aims
to find the low-dimensional representations for a data set by
approximately preserving the geodesic distances between data
pairs. These decomposition-based graph embedding methods have
achieved good performance in some cases. However, they suffer
from the complex computation of a large-scale matrix decom-
position, which makes them neither practical nor effective for
addressing data mining tasks in large-scale networks.

Along with word2vec [25], which embeds words with low-
dimensional vectors, many advances have been made toward this
emerging network analysis paradigm [17], [18], [26], [27], [28],
[29], [30], [31], [32], [33], [34], [35], [36], [37], [38]. For instance,
[26], [30] combine random walk and skip-gram [39] to learn node
representations. These methods construct some node sequences
by randomly walking on a network, and then leverage skip-gram
based models to learn node embeddings. In order to preserve the
first-order and second-order proximities between nodes, Tang et al.
[27] present a large-scale information network embedding model.
GraRep [28] and HOPE [40] are both designed to model the high-
order proximity between nodes in networks. [32], [36] perform
matrix factorization to find a low-rank space to represent a net-
work. Some deep neural network based models are also proposed
for network embedding, such as autoencoder based methods [31],
[37]. Besides network topology, some works focus on utilizing
the side information, e.g., node content in networks [29], [35].
Recent graph neural networks (GNN) have achieve large attention
and some GNN-based models are proposed to solve various data
mining tasks (e.g., classification) [41], [42], [43], [44]. Although
these methods achieve promising performance, all of them can
only handle homogeneous networks and cannot be directly applied
to embed HINs which contain multiple types nodes and edges.

2.2 HIN Embedding
Due to the heterogeneity of networks, HIN embedding focuses
on preserving structural and semantic information in a network
[1], [3], which provides a new perspective for heterogeneous
data analysis and makes network embedding more practical in
the real world. Analogous to homogeneous network embedding
mentioned before, HIN embedding methods can be broadly cat-
egorized into four types. The first is meta-path based random
walk [8], [9], [45]. Dong et al. [9] propose to randomly walk
on a HIN based on meta-paths and then embed different types
of nodes into their corresponding latent spaces. HIN2Vec [8]
conducts random walk and learns latent vectors of nodes by
conducting multiple prediction training tasks jointly. Secondly,
some methods decompose a HIN into simple networks and then
model them separately [10], [11], [16]. For example, EOE [11]
decomposes the complex academic heterogeneous network into a
word co-occurrence network and an author cooperative network,
and simultaneously performs representation learning on node pairs
in sub-networks. Thirdly, there are also some neural network based
methods that are designed to embed HINs [7], [13], [14], [46].
Wang et al. [7] model heterogeneous information with an autoen-
coder and then obtain the final node embeddings by aggregating
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multiple feature representations. At last, some HIN embedding
methods are proposed for exploring HIN unique properties (e.g.,
heterogeneous structures) [47], [48] or conducting specific tasks
(e.g., recommendation and link prediction) [15], [49]. In PME
[15], Chen et al. propose to map different types of nodes into the
same relation space and conduct heterogeneous link prediction.
All of the above methods only focus on embedding static HIN
networks, while ignoring that the network itself is dynamically
changing over time.

2.3 Dynamic Network Embedding

Recently, some researchers have begun to pay attention to dynamic
network embedding and some attempts have been done [17], [33],
[38], [50], [51], [52]. DANE [33] is proposed to learn node
embeddings in dynamic attribute networks, which learns node
embeddings with an offline method and updates embeddings as
network and attribute change over time. Based on the generalized
eigenvalue problem, DANE captures the changes of structures
with the adjacency matrix and models the changes of attributes
with the attribute matrix, which only considers the first-order
proximity. In order to preserve high-order proximity between
nodes in a dynamic network, Zhu et al. [17] design a GSVD based
method DHPE to learn and update node embeddings as network
evolves. By transforming the GSVD problem to a generalized
eigenvalue problem, DHPE incorporates the changes of dynamic
networks with Katz Index based matrix, so as to preserve high-
order proximity in homogenous networks. In DynamicTriad [38],
Zhou et al. model the evolution of a network as a triadic closure
process and learn node embeddings for each network snapshot
at different timesteps. DynamicTriad imposes triad (i.e., a group
of three vertices) to model the dynamic changes of network
structures, and models how a closed triad develops from an open
triad. Song et al. [51] extend skip-gram based models and propose
a dynamic network embedding framework. Most recently, DHNE
[53] is proposed to learn node embeddings in dynamic hetero-
geneous networks. DHNE constructs comprehensive historical-
current networks based on subgraphs of snapshots, on which
random walks are performed and a dynamic heterogeneous skip-
gram model is used to learn the embeddings. DHNE focuses on
preserving dynamic characteristics of nodes with a dynamic het-
erogeneous skip-gram mode, which cannot incrementally update
node embeddings without retraining model.

All in all, the aforementioned methods are either designed
for homogeneous networks which contains relatively simple struc-
tures, or cannot handle dynamic HINs which have to be retrained
on the whole HIN to obtain fresh embeddings as the structure
changes.

3 NOTATIONS AND DEFINITIONS

As a HIN evolves over time, nodes and edges may be added
(deleted) and changes will vary by types. Formally, we define a
dynamic HIN as follows:

Definition 1. Dynamic Heterogeneous Information Network. A
dynamic Heterogeneous Information Network (HIN) at time step
t is defined as Gt = (Vt, Et, φ, ϕ)(1 ≤ t ≤ T ), where Vt and
Et denote the set of nodes and edges at time step t. In a HIN,
each node v and edge e are associated with their type mapping
functions φ : Vt → TV and ϕ : Et → TE . TV and TE denote the
sets of node and edge types, where |TV |+ |TE | > 2.

Author(A) Paper(P) Conf.(C) Term(T)

a1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

a2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

a3
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

a4
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

p1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

p2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

p3
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

p4
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

c1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

c2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

t1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

t2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

t3
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Fig. 1: A toy example of the meta-path based first- and second-
order proximities in a HIN. With the meta-path APA, nodes a1 and
a2 should be placed closely in the low-dimensional space as they
are connected with a meta-path instance a1p1a2, which indicates the
meta-path based first-order proximity. Since the neighborhoods of a1

is the same as a4’s, i.e., {a2, a3}, under the meta-path APA, nodes
a1 and a4 should also be close to each other in the low-dimensional
space even though they are not directly connected, which indicates the
meta-path based second-order proximity.

A meta-path connects two nodes via semantic paths, which is
superior to capture structure and semantics in a HIN [1], [2].
Definition 2. Meta-path. A meta-path m is defined as a sequence
of node type tvi ∈ TV or edge type tej ∈ TE in the form

of tv1
te1−→ tv2 · · ·

tel−→ tvl+1
(abbreviated as tv1tv2 · · · tvl+1)

which describes a composite relation between v1 and vl+1. A
path (v1, v2, · · · , vl+1) following the meta-path m is called as
path instance of meta-path m.

Example 1. As shown in Figure 1, a meta-path A
write−→ P

Published−→ C
publish−→ P

written−→ A (abbreviated as APCPA) de-
scribes a composite relation between two authors, which indicates
that ‘two authors write papers published in the same conference’.
Notice that two nodes can be connected via multiple meta-paths,
and thus there are multiple path instances between two nodes. In
Figure 1, nodes a1 and a3 can be connected via APA (e.g., path
instance a1p2a3) and APCPA (e.g., path instance a1p1c2p2a3).

Since meta-paths have shown their superiority in terms of
capturing structure and semantics [1], we define the meta-path
based first- and second-order proximities and meta-path aug-
mented adjacency matrix in HINs.
Definition 3. Meta-path based First-Order Proximity. For a
pair of nodes (vi, vj), the number of path instances following the
meta-path m connecting them represents the first-order proximity
between vi and vj , which measures the local structure proximity
between nodes in HINs.
Definition 4. Meta-path based Second-Order Proximity. Under
a meta-path m, the neighborhoods N (vi)

m of node vi contain
nodes connected to vi via path instances following m. The
proximity between vi’s neighborhoods N (vi)

m and vj’s neigh-
borhoods N (vj)

m is defined as the second-order proximity based
on meta-path m, which measures the similarity of two nodes in
term of their neighborhood structure.
Example 2. Fig. 1 shows a toy example of the meta-path based
first- and second-order proximities in a HIN. Note that the meta-
path based first-order proximity indicates the pairwise similarity
between nodes, while the meta-path based second-order proximity
means the similarity between a node and its neighborhood set.
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Since the adjacency matrix is the most basic and common
way to model the network structure, we integrate meta-path and
adjacency matrix to define the meta-path augmented adjacency,
which can capture the structure and semantics of the HIN in a
natural manner.

Definition 5. Meta-path Augmented Adjacency Matrix. Given
a meta-path m, we define a meta-path augmented adjacency
matrix as Wm = [wmij ], where wmij is the number of path
instances following m connecting nodes vi and vj . Naturally,
Wm combines the topological structure and semantics of the HIN.
And it is symmetric, if m is a symmetric meta-path.

4 THE DYHNE MODEL

In this section, we firstly present the static HIN embedding model
(StHNE) as a basic model for preserving the meta-path based
first- and second-order proximities, which learns the node em-
beddings by solving the generalized eigenvalue problem. Then we
introduce the eigenvalue perturbation theory to derive the updated
embeddings, so that our dynamic model (DyHNE) with meta-path
based proximity can learn the node embeddings effectively while
capturing the structure and semantics efficiently. We present an
overall schematic illustration of StHNE and DyHNE in Fig. 2.

4.1 Basic Idea
The core idea of DyHNE is to build an effective and efficient ar-
chitecture that can capture the changes of structure and semantics
in a dynamic HIN and derive the node embeddings efficiently. To
achieve this, we first introduce the meta-path based first-order and
second-order proximities to preserve structure and semantics in
HINs. As shown in Figure 2, three augmented adjacency matrices
based on meta-path APA, APCPA and APTPA are defined and
fused with weights, which gives rise to the fused matrix W(t) at
time t. Then, we propose a basic static HIN embedding model
(StHNE) which learns node embeddings U(t) by solving the
generalized eigenvalue problem in terms of the fused matrix W(t).
As the HIN evolves from time t to t + 1, new nodes and edges
are added into the network (i.e. nodes a3, p4 and t3; edges
(a3, p4), (a1, p4), (p4, c2), (p4, t2) and (p4, t3)), leading to the
changes of meta-path augmented adjacency matrices. Since these
matrices are actually the realization of structure and semantics in
the HIN, we naturally capture changes of structure and semantics
with the perturbation of the fused matrix (i.e. ∆W). Further,
we tailor the embeddings update formulas for dynamic HIN with
matrix perturbation theory, so that our dynamic HIN embedding
model (DyHNE) can efficiently derive the changed embedding
∆U and update network embedding from U(t) to U(t+1) with
U(t+1) = ∆U + U(t).

In a nutshell, the proposed StHNE is capable of capturing the
structures and semantics in a HIN with meta-path based first-order
and second-order proximities, and DyHNE achieves the efficient
update of network embeddings with the perturbation of meta-path
augmented adjacency matrices.

4.2 Static HIN Embedding
Before achieving effective update node embeddings when the HIN
evolves over time, a proper static HIN embedding for capturing
structural and semantic information is a must. Hence, we next
propose a static HIN embedding model (StHNE), which preserves
the meta-path based first- and second-order proximities.

4.2.1 StHNE with Meta-path based First-order Proximity
The meta-path based first-order proximity models the local prox-
imity in HINs, which means that the nodes connected via path
instances are similar. Given a node pair (vi, vj) connected via
path instances following m, we model the meta-path based first-
order proximity as follows:

pm1 (vi, vj) = wmij ||ui − uj ||22, (1)

where ui ∈ Rd is the d-dimension representation vector of node
vi. To preserve the meta-path based first-order proximity in HINs,
we minimize the following objective function:

Lm1 =
∑

vi,vj∈V
wmij ||ui − uj ||22. (2)

As larger wmij indicates that vi and vj have more connections
via the meta-path m, which makes nodes vi and vj closer in the
low-dimensional space.

4.2.2 StHNE with Meta-path based Second-order Proximity
The meta-path based second-order proximity is determined
through the shared neighborhood structure of nodes. Given the
neighbors of node vp under the meta-pathm, denoted asN (vp)

m,
we can model the second-order proximity based on meta-path as
follows:

pm2 (vp,N (vp)
m) = ||up −

∑
vq∈N (vp)m

wmpquq||22. (3)

Here, we normalize wmpq so that
∑
vq∈N (vp)m wpq = 1.

With Eq. (3), we keep the node p close to its neighbors under a
specific meta-path. As shown in Fig. 1, under the meta-path APA,
nodes a1 and a4 share the same neighborhood set {a2, a3}, Eq.
(3) guarantees that node a1 is close to set {a2, a3}, and node
a4 is also close to {a2, a3}, so nodes a1 and a4 will be close
even if they are not directly connected. This implicitly preserves
the meta-path based second-order proximity of two unconnected
nodes, as defined in Definition 3. To preserve the meta-path based
second-order proximity in HINs, we minimize the following object
function:

Lm2 =
∑
vp∈V

||up −
∑

vq∈N (vp)m

wmpquq||22. (4)

Intuitively, minimizing Eq. (4) will cause the small distance
between node vp and its neighbors in the low-dimensional space.
Thus, nodes that shares the same neighbors with node vp will
also be close to vp. In this way, the meta-path based second-order
proximity defined in Def. 3 can be preserved.

4.2.3 The Unified StHNE Model
Considering multiple semantic relations in a HIN, we define a set
of meta-paths M and assign weights {θ1, θ2, ..., θ|M|} to each
meta-path, where ∀θi > 0 and

∑|M|
i=1 θi = 1. Thus, our unified

model, which combines multiple meta-paths while preserving both
of the meta-path based first- and second-order proximities, is as
follows:

L =
∑
m∈M

θm(Lm1 + γLm2 ), (5)

where γ is the trade-off factor. Now, the static HIN embedding
problem is turned to:

arg min
U>DU=I

∑
m∈M

θm(Lm1 + γLm2 ), (6)
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Changed Embedding

Fig. 2: The overall architecture of the proposed StHNE and DyHNE. At time step t, StHNE extracts three meta-path augmented adjacency
matrices (i.e., WAPA, WAPCPA and WAPTPA) based on meta-path APA, APCPA and APTPA, and fuses them with weights. By solving the
generalized eigenvalue problem, StHNE derives the node embeddings that preserve the meta-path based first- and second-order proximities.
At the next time stem t + 1, three new nodes (i.e., author a3, paper p4 and term t3) appear in the HIN, and correspondingly, five edges
(i.e., (a3, p4), (a1, p4), (p4, c2), (p4, t2), (p4, t3)) join the network. The changes of structure and semantics in the HIN are captured with
the perturbation of fused meta-path augmented adjacency matrix ∆W. Based on matrix perturbation theory, DyHNE efficiently derives the
changed embedding ∆U and updates network embeddings from U(t) to U(t+1) with U(t+1) = ∆U + U(t).

where D is the degree matrix that will be described later. The
constraint U>DU = I removes an arbitrary scaling factor in
the embedding and avoids the degenerate case where all node
embeddings are equal.

4.3 Optimization with Spectral Theory
Inspired by spectral theory [23], [54], we transform the problem of
Eq. (6) as the generalized eigenvalue problem, so that we can get
a closed-form solution and dynamically update embeddings with
the eigenvalue perturbation theory [20]. Hence, we reformulate
Eq. (2) as follows:

Lm1 =
∑

vi,vj∈V
wmij ||ui − uj ||22

= 2tr(U>LmU), (7)

where tr(·) is the trace of the matrix, U is the embedding matrix,
Lm = Dm −Wm is the Laplacian matrix under the meta-path
m, and Dm is a diagonal matrix with Dm

ii =
∑
j w

m
ij . Similarly,

Eq. (4) can be rewritten as follows:

Lm2 =
∑
vp∈V

||up −
∑

vq∈N (vp)m

wmpquq||22

= 2tr(U>HmU), (8)

where Hm = (I−Wm)>(I−Wm) is symmetric. As discussed
earlier, we fuse all meta-paths inM, which gives rise to:

W =
∑
m∈M

θmWm, D =
∑
m∈M

θmDm. (9)

Hence, the StHNE can be reformulated as:

L = tr(U>(L + γH)U)), (10)

where L = D −W and H = (I −W)>(I −W). Now, the
problem of static HIN embedding reduces to:

arg min
U>DU=I

tr(U>(L + γH)U), (11)

where L + γH is symmetric.
The problem of Eq. (11) boils down to the generalized eigen-

value problem as follows [55]:

(L + γH)U = DΛU, (12)

where Λ = diag(λ1, λ2, ..., λNM) is the eigenvector matrix,
NM is the number of nodes in the meta-path setM.

Having transformed the StHNE as the generalized eigen-
value problem, the embedding matrix U is given by the top-d
eigenvectors with the smallest non-zero eigenvalues. As the HIN
evolves from time t to t+ 1, the dynamic HIN embedding model
focuses on efficiently updating U(t) to U(t+1). That is, update the
eigenvectors and eigenvalues.

4.4 Dynamic HIN Embedding
The core idea of a dynamic HIN embedding model is to learn node
embeddings efficiently in a dynamic manner, thus we next develop
an efficient way to update the eigenvectors and eigenvalues based
on matrix perturbation.

4.4.1 Matrix Perturbation in DyHNE
Following the previous works [17], [33], we assume that the
network evolves on a common node set of cardinality N . A
nonexistent node is treated as an isolated node with zero degree
and thereby the evolution of a network can be regarded as the
change of edges [56]. Besides, the addition (deletion) of edges
may vary by types. It is naturally appealing to capture the
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evolution of a dynamic HIN with the perturbation of meta-path
augmented adjacency matrix ∆W =

∑
m∈M θm∆Wm. Thus,

the changes of L and H can be calculated as follows:

∆L = ∆D−∆W, (13)

∆H = ∆W>∆W − (I−W)>∆W −∆W>(I−W). (14)

Since perturbation theory can give approximate solution to a
problem by adding a perturbation term [20], we can update eigen-
values and eigenvectors from the eigenvalues and eigenvectors at
the previous time with the eigenvalue perturbation. Hence, at new
time step, we have the following equation based on Eq. (12):

(L + ∆L + γH + γ∆H)(U + ∆U)

= (D + ∆D)(Λ + ∆Λ)(U + ∆U), (15)

where ∆U and ∆Λ are the changes of the eigenvectors and
eigenvalues. Here, we omit the (t) superscript for brevity since
the perturbation process for any time step t is the same. Let us
focus on a specific eigen-pair (ui, λi), Eq. (15) can be rewritten
as follows:

(L + ∆L + γH + γ∆H)(ui + ∆ui)

= (λi + ∆λi)(D + ∆D)(ui + ∆ui). (16)

Hence, the dynamic HIN embedding problem is how to calculate
the changes of the i-th eigen-pair (∆ui,∆λi), because if we have
∆U and ∆Λ between t and t + 1, we can efficiently update the
embedding matrix with U(t+1) = U(t) + ∆U.

We first introduce how to calculate ∆λi. By expanding Eq.
(16) and removing the higher order terms that have limited
effects on the accuracy of the solution [20], such as ∆L∆ui and
∆λi∆D∆ui, then based on the fact (L + γH)ui = λiDui, we
have the following:

(L + γH)∆ui + (∆L + γ∆H)ui

= λiD∆ui + λi∆Dui + ∆λiDui. (17)

Furthermore, left multiplying both sides by u>i , we have:

u>i (L + γH)∆ui + u>i (∆L + γ∆H)ui

= λiu
>
i D∆ui + λiu

>
i ∆Dui + ∆λiu

>
i Dui. (18)

As L + γH and D are symmetric, then based on the fact
(L + γH)ui = λiDui and right multiplying both side by ∆ui,
we have u>i (L + γH)∆ui = λiu

>
i D∆ui. Thus, we can rewrite

Eq. (18) as follows:

u>i (∆L + γ∆H)ui = λiu
>
i ∆Dui + ∆λiu

>
i Dui. (19)

Based on Eq. (19), we get the changes of the eigenvalue λi:

∆λi =
u>i ∆Lui + γu>i ∆Hui − λiu>i ∆Dui

u>i Dui
. (20)

It is easy to see that D is a positive-semidefinite matrix, so we
have u>i Dui = 1 and u>i Duj = 0(i 6= j) [20], [57]. Thus,

∆λi = u>i ∆Lui + γu>i ∆Hui − λu>i ∆Dui. (21)

Having got the change of eigenvalue ∆λi between two continuous
time steps, our next goal is to calculate the changes of eigenvectors
∆ui.

As a HIN usually evolves smoothly [56], the network changes
based on meta-paths (i.e., ∆W) are subtle. We assume the

perturbation of the eigenvectors ∆ui is linearly weighted by the
top-d eigenvectors with the smallest non-zero eigenvalues [20]:

∆ui =
d+1∑

j=2,j 6=i
αijuj , (22)

where αij indicates the weight of uj on ∆ui. Thus, the problem
of calculating ∆ui now is transformed into how to determine these
weights. Considering Eq.(16), by replacing ∆ui with Eq.(22) and
removing the higher order terms that have limited effects on the
accuracy of the solution [58], we obtain the following:

(L + γH)
d+1∑

j=2,j 6=i
αijuj + (∆L + γ∆H)ui

=λiD
d+1∑

j=2,j 6=i
αijuj + λi∆Dui + ∆λiDui.

(23)

With the fact that (L + γH)
∑d+1
j=2 αijuj = D

∑d+1
j=2 αijλjuj ,

and by multiplying u>p (2 ≤ p ≤ d + 1, p 6= i) on both sides of
Eq. (23), we get:

u>p D
d+1∑

j=2,j 6=i
αijλjuj + u>p (∆L + γ∆H)ui

=λiu
>
p D

d+1∑
j=2,j 6=i

αijuj + λiu
>
p ∆Dui + ∆λiu

>
p Dui.

(24)

Based on u>i Dui = 1 and u>i Duj = 0(i 6= j), we can simplify
the above formula and get:

λpαip + u>p (∆L + γ∆H)ui = λiαip + λiu
>
p ∆Dui. (25)

Finally, we obtain the weight αip as follows:

αip =
u>p ∆Lui + γu>p ∆Hui − λiu>p ∆Dui

λi − λp
, i 6= p. (26)

To sum up, we now have the changes of eigenvalues and eigen-
vectors based on Eq. (21), (22) and (26). The new eigenvalues and
eigenvectors at t+ 1 can be updated as follows:

Λ(t+1) = Λ(t) + ∆Λ, U(t+1) = U(t) + ∆U. (27)

4.4.2 Acceleration
Until now, a straightforward idea to update the embeddings is
to calculate Eq. (21), (22) and (26) for Eq. (27). However, the
calculation of Eq. (21) is time-consuming due to the definition of
∆H (i.e., Eq. (14)). Thus, we propose an acceleration solution
tailored for dynamic HIN embedding.

Let us focus on ∆λi and αij in a more detailed way. We
replace ∆H with Eq. (14) and remove the higher order terms as
earlier, Eq. (21) and Eq. (26) can be reformulated as follows:

∆λi =u>i ∆Lui − λiu>i ∆Dui (28)

+γ{[(W − I)ui]
>∆Wui + (∆Wui)

>(W − I)ui},

αij =
u>j ∆Lui − λiu>j ∆Dui

λi − λj
(29)

+
γ{[(W − I)uj ]

>∆Wui + (∆Wuj)
>(W − I)ui}

λi − λj
.
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For convenience sake, we rewrite ∆λi and αij as follows:

∆λi = C(i, i) + γ[A(:, i)>B(:, i) + B(:, i)>A(:, i)], (30)

αij =
C(j, i) + γ[A(:, j)>B(:, i) + B(:, j)>A(:, i)]

λi − λj
, (31)

where A(:, i) = (W − I)ui, B(:, i) = ∆Wui and C(i, j) =
u>i ∆Luj − λiu>i ∆Duj .

Obviously, the calculation of A is time-consuming. Hence, we
define A(t+1)(:, i) at time step t+ 1 as follows:

A(t+1)(:, i) = (W − I + ∆W)(ui + ∆ui). (32)

Replacing ∆ui with Eq. (22), we have:

A(t+1)(:, i) = (W − I + ∆W)(ui +
d+1∑

j=2,j 6=i
αijuj)

=
d+1∑
j=2

βij(W − I + ∆W)uj ,

(33)

where βij = αij if i 6= j, otherwise, βij = 1. Furthermore, we
can obtain the following:

A(t+1)(:, i) =
d+1∑
j=2

βij(A
t(:, j) + Bt(:, j)). (34)

Now, we reduce the time complexity of updating A(t+1) from
O(ed) to O(d2), which guarantees the efficiency of DyHNE.

4.4.3 Complexity Analysis
Since we only need to run the static model once at the very
beginning of the dynamic model, we can dynamically update the
representation of the network over T time steps.

For the StHNE, given a meta-path set M with NM nodes,
the time complexity of the generalized eigenvalue problem is
O(dN2

M), where d is the embedding dimension. Although the
theoretical time complexity of the StHNEl is high, the real running
time is very low since we only need to calculate top-d eigenvalues
and eigenvectors of a sparse matrix.

For the DyHNE, let us denote T as the total number of the
time steps. f and g are the number of non-zeros entries in the
sparse matrices ∆D and ∆W, respectively. In each time step,
the time complexities of calculating B and C are O(fd) and
O((f + g)d2), respectively. To calculate αi and top-d eigen-
vectors, our model takes O(d2) and O(d2NM), respectively. Fi-
nally, updating A(t+1) takes O(d2). Overall, the time complexity
of the proposed dynamic update method over T time steps is
O(T (f + g + NM)d2). Since d � NM, f and g are often
small, the time complexity of our dynamic model is linear with
the number of nodes in the network.

5 EXPERIMENTS

In this section, we conduct comprehensive and extensive exper-
iments to demonstrate the effectiveness and efficiency of the
proposed model. Specifically, we first evaluate the effectiveness
of our proposed StHNE and DyHNE. Next is the evaluation of the
efficiency of the dynamic update methods. At last, we investigate
the parameter sensitivity. Code and dataset are available online1.

1. https://github.com/rootlu/DyHNE

TABLE 1: Statistics of datasets.

Datasets Node Types #Nodes Meta-path Time Steps

Yelp

Star (S) 9
BSB

BRURB 10User (U) 1,286
Review (R) 33,360

Business (B) 2,614

DBLP

Term (T) 8,833 APA
APCPA
APTPA

10Paper (P) 14,376
Author (A) 14,475

Conference (C) 20

AMiner

Term (T) 8,811 APA
APCPA
APTPA

10Paper (P) 18,181
Author (A) 22,942

Conference (C) 22

5.1 Datasets and Settings

5.1.1 Datasets

We evaluate models on three datasets, including two academic
networks (i.e., DBLP and AMiner) and a social media network
(i.e., Yelp). The statistics of these datasets are summarized in
Table 1.

• Yelp2 is a social media dataset provided by Yelp Challenge.
We extract information related to restaurants of three sub-
categories: “American (New) Food”, “Fast Food” and “Sushi
Bars” [59], and construct a HIN. The meta-paths that we
are interested in are BRURB (i.e., the user reviewed on two
businesses) and BSB (i.e., the same star level businesses).

• DBLP3 is an academic network in computer science. In this data
set, 4057 authors are labeled with their research areas such as
data mining. We consider meta-paths including APA (i.e., the co-
author relationship), APCPA (i.e., authors sharing conferences)
and APTPA (i.e., authors sharing terms).

• AMiner4 is also an academic network, which evolved from
1990 to 2005 in five research domains. For each author who
published in these five domains, his/her label is assigned to the
category with the majority of his/her publications. As in DBLP,
we are also interested in APA, APCPA and APTPA.

Please note that we can actually take much more meta-paths
into consideration for HIN embedding. However, there are infinite
meta-paths in a HIN, not all meta-paths have a positive effect
on embeddings [45], [60]. We consider two aspects to choose
the meta path. On the one hand, we analyze the structure and
semantics of different meta-path. For example, in DBLP dataset,
meta-path APA contains much more information than PCP, since
APA indicates a co-author relationship but PCP only means two
paper published in the same conference. Hence, meta-path APA is
much important for co-author relationship prediction. On the other
hand, we select widely used meta-paths according to the previous
works [9], [45], [59]. In Esim [45], authors give different weights
to various meta-paths, so as to evaluate the importance of different
meta-path to downstream tasks, which inspires us to select meta-
path with higher weights. Since the selection of meta-path is still
an open question and our work does not focus on this point, we
select the most used and meaningful meta-paths based on prior
knowledge and previous works [9], [45], [59].

2. https://www.yelp.com/dataset/challenge
3. https://dblp.uni-trier.de
4. https://www.aminer.cn/data
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TABLE 2: Performance evaluation of node classification on static HINs. (Tr.Ratio means the training ratio.)

Datasets Metric Tr.Ratio DeepWalk LINE-1st LINE-1st ESim metapath2vec StHNE-1st StHNE-2nd StHNE

Yelp

Macro-F1
40% 0.6021 0.5389 0.5438 0.6387 0.5872 0.6193 0.5377 0.6421
60% 0.5954 0.5865 0.5558 0.6464 0.6081 0.6639 0.5691 0.6644
80% 0.6101 0.6012 0.6068 0.6793 0.6374 0.6909 0.5783 0.6922

Micro-F1
40% 0.6520 0.6054 0.6105 0.6896 0.6427 0.6838 0.6118 0.6902
60% 0.6472 0.6510 0.6233 0.7011 0.6681 0.7103 0.6309 0.7017
80% 0.6673 0.6615 0.6367 0.7186 0.6875 0.7232 0.6367 0.7326

DBLP

Macro-F1
40% 0.9295 0.9271 0.9172 0.9354 0.9213 0.9392 0.9283 0.9473
60% 0.9355 0.9298 0.9252 0.9362 0.9311 0.9436 0.9374 0.9503
80% 0.9368 0.9273 0.9301 0.9451 0.9432 0.9511 0.9443 0.9611

Micro-F1
40% 0.9331 0.9310 0.9219 0.9394 0.9228 0.9421 0.9312 0.9503
60% 0.9383 0.9328 0.9291 0.9406 0.9305 0.9487 0.9389 0.9519
80% 0.9392 0.9323 0.9347 0.9502 0.9484 0.9543 0.9496 0.9643

AMiner

Macro-F1
40% 0.8838 0.8929 0.8972 0.9449 0.9487 0.9389 0.9309 0.9452
60% 0.8846 0.8909 0.8967 0.9482 0.9490 0.9401 0.9354 0.9499
80% 0.8853 0.8947 0.8962 0.9491 0.9493 0.9412 0.9381 0.9521

Micro-F1
40% 0.8879 0.8925 0.8958 0.9465 0.9469 0.9407 0.9412 0.9467
60% 0.8881 0.8936 0.8960 0.9482 0.9497 0.9423 0.9431 0.9509
80% 0.8882 0.8960 0.8962 0.9500 0.9511 0.9448 0.9423 0.9529

TABLE 3: Performance evaluation of relationship prediction on static HINs.

Datasets Metric DeepWalk LINE-1st LINE-1st ESim metapath2vec StHNE-1st StHNE-2nd StHNE

Yelp
AUC 0.7404 0.6553 0.7896 0.6651 0.8187 0.8046 0.8233 0.8364
F1 0.6864 0.6269 0.7370 0.6361 0.7355 0.7348 0.7397 0.7512

ACC 0.6819 0.6115 0.7326 0.6386 0.7436 0.7286 0.7526 0.7661

DBLP
AUC 0.9235 0.8368 0.7672 0.9074 0.9291 0.9002 0.9246 0.9385
F1 0.8424 0.7680 0.7054 0.8321 0.8645 0.8359 0.8631 0.8850

ACC 0.8531 0.7680 0.6805 0.8416 0.8596 0.8266 0.8577 0.8751

AMiner
AUC 0.7366 0.5163 0.5835 0.8691 0.8783 0.8935 0.9180 0.8939
F1 0.5209 0.5012 0.5276 0.6636 0.6697 0.7037 0.8021 0.7085

ACC 0.6686 0.6475 0.6344 0.7425 0.7506 0.7622 0.8251 0.7701

5.1.2 Baselines
We compare our proposed models StHNE and DyHNE with com-
prehensive state-of-the-art network embedding methods, including
two homogeneous network embedding methods (i.e., DeepWalk
[26] and LINE [27]); two heterogeneous information network
embedding methods (i.e., ESim [45] and metapath2vec [9]); and
two dynamic homogeneous network embedding methods (i.e.,
DANE [33], DHPE [17] and DHNE [53]). Additionally, in order
to verify the effectiveness of the meta-path based first-order and
second-order proximities, we test the performance of StHNE-1st
and StHNE-2nd. We use codes of the baseline methods provided
by their authors.
• DeepWalk [26] 5 performs random walks on networks and then

learns low-dimensional node vectors via Skip-gram model.
• LINE [27] 6 considers first-order and second-order proximities

in networks. We denote the model that only uses first-order or
second-order proximity as LINE-1st or LINE-2nd respectively.

• ESim [45] 7 takes a given set of meta-paths as input to learn
the representation of nodes. For fair comparison, we tune the
weights of meta-paths as we do in our models.

• metapath2vec [9] 8 leverages meta-path based random walk
and Skip-gram to learn node embedding. Since metapath2vec
cannot handle multiple meta-paths at the same time, we tune

5. https://github.com/phanein/deepwalk
6. https://github.com/tangjianpku/LINE
7. https://github.com/shangjingbo1226/ESim
8. https://ericdongyx.github.io/metapath2vec/m2v.html

the weights of meta-paths as we do in our models and then fuse
embeddings learned from single meta-paths with the optimal
weights.

• DANE [33] 9 is a framework for dynamic attributed network
embedding. We train this model without considering node types
and learn the representation of nodes.

• DHPE [38] 10 adopts the generalized SVD to preserve the
high-order proximity in homogeneous network, which is also
designed for incrementally updating the embeddings of nodes.

• DHNE [53] 11 constructs comprehensive historical-current net-
works based on subgraphs of snapshots, on which random walks
are performed and a dynamic heterogeneous skip- gram model
is used to learn the embeddings.

• StHNE-1st is our static model for HIN embedding only utiliz-
ing the first-order proximity.

• StHNE-2nd is our static model for HIN embedding only utiliz-
ing the second-order proximity.

5.1.3 Parameters
For a fair comparison, we set the embedding dimension d = 100
for all models. The trade-off factor γ in our method is set as 1.
We adopt grid search with a range of (0, 1) to obtain the best-
weighted combination of meta-paths in evaluations assuming that
we have the ground truth. The size of negative samples is set as

9. http://www.public.asu.edu/ jundongl/code/DANE.zip
10. http://pengcui.thumedialab.com
11. https://github.com/Yvonneupup/DHNE
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TABLE 4: Performance evaluation of node classification on dynamic HINs. (Tr.Ratio means the training ratio.)

Datasets Metric Tr.Ratio DeepWalk LINE-1st LINE-1st ESim metapath2vec StHNE DANE DHPE DHNE DyHNE

Yelp

Macro-F1
40% 0.5840 0.5623 0.5248 0.6463 0.5765 0.6118 0.6102 0.5412 0.6293 0.6459
60% 0.5962 0.5863 0.5392 0.6642 0.6192 0.6644 0.6342 0.5546 0.6342 0.6641
80% 0.6044 0.6001 0.6030 0.6744 0.6285 0.6882 0.6471 0.5616 0.6529 0.6893

Micro-F1
40% 0.6443 0.6214 0.5901 0.6932 0.6457 0.6826 0.6894 0.5823 0.6689 0.6933
60% 0.6558 0.6338 0.5435 0.6941 0.6656 0.7074 0.6921 0.5981 0.6794 0.6998
80% 0.6634 0.6424 0.6297 0.7104 0.6722 0.7281 0.6959 0.6034 0.6931 0.7298

DBLP

Macro-F1
40% 0.9269 0.9266 0.9147 0.9372 0.9162 0.9395 0.8862 0.8893 0.9302 0.9434
60% 0.9297 0.9283 0.9141 0.9369 0.9253 0.9461 0.8956 0.8946 0.9351 0.9476
80% 0.9322 0.9291 0.9217 0.9376 0.9302 0.9502 0.9051 0.9087 0.9423 0.9581

Micro-F1
40% 0.9375 0.9310 0.9198 0.9383 0.9254 0.9438 0.8883 0.8847 0.9352 0.9467
60% 0.9346 0.9245 0.9192 0.9404 0.9281 0.9496 0.8879 0.8931 0.9404 0.9505
80% 0.9371 0.9297 0.9261 0.9415 0.9354 0.9543 0.9071 0.9041 0.9489 0.9617

AMiner

Macro-F1
40% 0.8197 0.8219 0.8282 0.8797 0.8673 0.8628 0.7642 0.7694 0.8903 0.9014
60% 0.8221 0.8218 0.8323 0.8807 0.8734 0.8651 0.7704 0.7735 0.9011 0.9131
80% 0.8235 0.8238 0.8351 0.8821 0.8754 0.8778 0.7793 0.7851 0.9183 0.9212

Micro-F1
40% 0.8157 0.8189 0.8323 0.8729 0.8652 0.8563 0.7698 0.7633 0.8992 0.9117
60% 0.8175 0.8182 0.8361 0.8734 0.8693 0.8574 0.7723 0.7698 0.9045 0.9178
80% 0.8191 0.8201 0.8298 0.8751 0.8725 0.8728 0.7857 0.7704 0.9132 0.9203

TABLE 5: Performance evaluation of relationship prediction on dynamic HINs.

Datasets Metric DeepWalk LINE-1st LINE-1st ESim metapath2vec StHNE DANE DHPE DHNE DyHNE

Yelp
AUC 0.7316 0.6549 0.7895 0.6521 0.8164 0.8341 0.7928 0.7629 0.8023 0.8346
F1 0.6771 0.6125 0.7350 0.6168 0.7293 0.7506 0.7221 0.6809 0.7194 0.7504

ACC 0.6751 0.6059 0.7300 0.6185 0.7395 0.7616 0.7211 0.7023 0.7024 0.7639

DBLP
AUC 0.9125 0.8261 0.7432 0.9053 0.9196 0.9216 0.5413 0.6411 0.8945 0.9278
F1 0.8421 0.7840 0.7014 0.8215 0.8497 0.8621 0.7141 0.6223 0.8348 0.8744

ACC 0.8221 0.7227 0.6754 0.8306 0.8405 0.8436 0.5511 0.5734 0.8195 0.8635

AMiner
AUC 0.8660 0.6271 0.5648 0.8459 0.8694 0.8659 0.8405 0.8412 0.8289 0.8823
F1 0.7658 0.5651 0.6071 0.7172 0.7761 0.7567 0.7167 0.7158 0.7386 0.7792

ACC 0.7856 0.5328 0.5828 0.7594 0.7793 0.7733 0.7527 0.7545 0.7498 0.7889

5. We set the number of walks per node as 10, the walk length as
50 and the window size as 5. To apply the homogeneous network
embedding models for HINs, we ignore the types of nodes and
edges. We will make our code publicly available after the review.

5.2 Effectiveness of StHNE
To evaluate the effectiveness of StHNE, here we learn the node
embeddings with the static embedding methods on the whole HIN
without considering the evolution of the network. In other words,
given a dynamic network with 10 time steps {G1, · · · ,G10}, we
conduct all static network embedding methods, including StHNE,
on the union network, i.e., G1 ∪ G1 ∪ · · · G10.

5.2.1 Node Classification
Node classification is a common task to evaluate the performance
of representation learning on networks. In this task, after learning
the node embeddings on the fully evolved network, we train
a logistic regression classifier with node embeddings as input
features. The ratio of training set is set as 40%, 60%, and 80%.
We set the weights of BSB and BRURB in Yelp to 0.4 and 0.6.
In DBLP, we assign weights {0.05, 0.5, 0.45} to {APA, APCPA,
APTPA}. In AMiner, we assign weights {0.25, 0.5, 0.25} to {APA,
APCPA, APTPA}. We report the results in terms of Macro-F1 and
Micro-F1 in Table 2.

As we can observe, the StHNE outperforms all baselines on
three datasets. It improves classification performance by about
8.7% in terms of Macro-F1 averagely with 80% training ratio,

which is due to the weighted integration of meta-paths and the
preservation of network structure. Both our model StHNE, ESim
and metapath2vec fuse multiple meta-paths with weights, but the
performances of ESim and metapath2vec are slight worse on
three datasets. This may be caused by the separation of meta-
paths fusion and model optimization, which lose some information
between multiple relationships for HIN embedding. We also notice
that StHNE-1st and StHNE-2nd both outperform LINE-1st and
LINE-2nd in most cases, which shows the superiority of the meta-
path based first- and second-order proximities in HINs. From a
vertical comparison, our StHNE continues to perform best against
different sizes of training data, which implies the stability and
robustness of our model.

5.2.2 Relationship Prediction
For DBLP and AMiner, we are interested in the co-author relation-
ships (APA). Hence, we generate training networks by randomly
hiding 20% AP in DBLP and 40% AP in AMiner as AMiner is
much larger. For Yelp, we want to find two businesses that one
person has reviewed (BRURB), which can be used to recommend
businesses for users. Thus, we randomly hide 20% BR to generate
the training network. We set the weights of BSB and BRURB in
Yelp to 0.4 and 0.6. In DBLP, we assign weights {0.9, 0.05, 0.05}
to {APA, APCPA, APTPA}. In AMiner, we assign weights {0.4,
0.3, 0.3} to {APA, APCPA, APTPA}. We evaluate the prediction
performance on testing networks with AUC and Accuracy.

Table 3 shows the comparison results of different methods.
Overall, we can see that StHNE achieves better relation pre-
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Fig. 4: Efficiency of the DyHNE compared to baselines.

diction performance than other methods on two metrics. The
improvement indicates the effectiveness of our model to preserve
structural information in HINs. Benefiting from the second-order
proximity preserved based on meta-path, StHNE-2nd outperforms
than StHNE-1st significantly. The reason is that the higher order
proximity is more conducive for preserving complex relationships
in HINs.

5.3 Effectiveness of DyHNE
In this section, our goal is to verify the effectiveness of DyHNE
compared with these baselines designed for dynamic networks
(i.e., DANE and DHPE). Since some baselines (e.g., DeepWalk,
LINE and StHNE) cannot handle dynamic networks and we
have reported the performance of these methods in Section 5.2,
here we only apply these methods to initial networks as in
[17], [33]. Specifically, given a dynamic network with 10 time
steps {G1, · · · ,G10}, for the static network embedding methods,
including StHNE, we only conduct them on G1 and report the
results, while for the dynamic network embedding methods, i.e.,
DANE, DHPE and DyHNE, we conduct them from G1 to G10 to
update the embedding incrementally, and report the final results to
evaluate their performance in a dynamic environment.

5.3.1 Node Classification
For each dataset, we generate the initial and growing HIN from
the original network. Each growing HIN contains ten time steps.
In Yelp, reviews are time-stamped, we randomly add 0.1% new
UR and BR to the initial network at each time step. For DBLP, we
randomly add 0.1% new PA, PC and PT to the initial network at

each time step. Since AMiner itself contains the published year of
each paper, we divide the edges appearing in 2005 into 10 time
steps uniformly.

As settings in Subsection 5.2.1, we vary the size of the training
set from 40% to 80% with the step size of 20% and the remaining
nodes as testing. We repeat each classification experiment for ten
times and report the average performance in terms of both Macro-
F1 and Micro-F1 scores, as shown in Table 4. We can see that
DyHNE consistently performs better than other baselines on all
datasets with all varying sizes of training data, which demonstrates
the effectiveness and robustness of our learned node embeddings
when served as features for node classification. Especially, our
DyHNE significantly outperforms the two dynamic homogeneous
network embedding methods, DANE and DHPE. The reason is
that our model considers the different types of nodes and relations
and can capture the structure and semantic information in HINs.
We also notice that our DyHNE achieves better performance than
DHNE which is also designed for dynamic HINs. We believe that
the improvement is due to the preserved meta-path based first-
order and second-order proximities in node embeddings learned
by our DyHNE.

Compared with the baselines designed for static HINs (i.e.,
DeepWalk, LINE, ESim and metapath2vec), our method also
achieves the best performance, which proves the effectiveness
of the update algorithm without losing important structure and
semantic information in HINs.

5.3.2 Relationship Prediction
For each dataset, we generate the initial, growing and testing
HIN from the original HIN. For Yelp, we first build the testing
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Ti
m

e 
C

os
t (

s)

0

0.7

1.4

2.1

Time Steps
1 2 3 4 5 6 7 8 9 10

d=10 d=20 d=50
d=100 d=150 d=200

(a) Yelp

Ti
m

e 
C

os
t (

s)

0

15

30

45

Time Steps
1 2 3 4 5 6 7 8 9 10

d=10 d=20 d=50
d=100 d=150 d=200

(b) DBLP

Ti
m

e 
C

os
t (

s)

0

22

44

66

88

110

Time Steps
1 2 3 4 5 6 7 8 9 10

d=10 d=20 d=50
d=100 d=150 d=200

(c) AMiner

Fig. 6: The running time w.r.t embedding dimensions.

network containing 20% BR. The remaining constitutes the initial
and growing network, where the growing network is divided into
10 time steps, and 0.1% new UR and BR are added to the initial
network at each time step. For DBLP, we use the similar approach
as described above. For AMiner, we take the data involved in
1990-2003 as the initial network, 2004 as the growing network
and 2005 as the testing network.

We report the prediction performance in Table 5 and have some
findings: (a) Our method consistently improves the relationships
prediction accuracy on the three datasets, which is attributed to the
structural information preserved by the meta-path based first-order
and second-order proximities. (b) DANE and DHPE obtain poor
performance due to the neglect of multiple types of nodes and
relations in HINs. (c) Compared to DHNE, our DyHNE consis-
tently performances better on three datasets, which is benefit from
the effectiveness of update algorithm. Additionally, the meta-path
based second-order proximity ensures that our DyHNE captures
the high order structures of HIN, which is also preserved with the
updated node embeddings.

5.4 Efficiency of StHNE
In this section, we evaluate the efficiency of the proposed static
HIN embedding model StHNE. Specifically, we compare StHNE
to other static model w.r.t the running time on three datasets, and
plot it in a log scale.

As we can see from Fig. 3, our method StHNE is much
faster than other methods, though the time complexity is large in
theory. Compared with models designed for static networks (i.e.,
DeepWalk, LINE, ESim and metapath2vec), the running time of
StHNE is in the same order with that of them, because StHNE

does not require iterative optimization and only needs to calculate
top-d eigenvalues and eigenvectors of the sparse matrices.

5.5 Efficiency of DyHNE
In this section, we evaluate the efficiency of our proposed DyHNE,
including not only the comparison with the efficiency of the
baselines that are designed for dynamic network embedding (i.e.,
DANE and DHPE), but also the comparison with our proposed
static HIN embedding model StHNE.

5.5.1 Efficiency compared to baselines
Since DANE and DHPE can also handle the dynamic changes in
the network, we compare the running time of DyHNE with DANE
and DHPE in Fig. 4. Obviously, DyHNE is much faster than DHPE
and DANE as the time complexity of DHPE is O(T (f + g +
N)d2 + d4) and that of DANE is O(T (f + g + N)d2). Here,
N is the total number of nodes in the network. Since DyHNE
models the changes of HINs with meta-path augmented adjacency
matrices, we only need to update the representation of nodes in
the meta-path set instead of all nodes with O(T (f+g+NM)d2)
time complexity.

5.5.2 Efficiency compared to StHNE
In order to validate the superiority of DyHNE against retraining
StHNE (i.e., StHNE-retrain), we compare the speedup ratio of
DyHNE against StHNE with respect to embedding dimensions in
Fig. 5. As the dimension is actually the number of eigenvalues
to be solved, DyHNE obtains around 174× speedup ratio on
Yelp when the embedding dimension is around 10. At the default
embedding dimension of 100, DyHNE is also 16× faster than
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StHNE. Overall, although the speedup ratio decreases with the
increase of the dimension, DyHNE is still much faster than
retraining by StHNE.

To further explore the efficiency of DyHNE, we count the
running time w.r.t embedding dimensions. Fig. 6 shows that the
time required to update the embedding increases gradually as the
dimension increases, which is consistent with our analysis of the
time complexity.

5.6 Approximation Error Analysis

As mentioned before, we drop the higher-order terms that have
limited effects on the accuracy of matrix decomposition [20]. In
order to evaluate the effects of higher-order terms on the accuracy
of the solution (the learned node embeddings), we design an
approximation error analysis experiment from two aspects,
i.e., matrix eigendecomposition and performance comparison.
In particular, with respect to matrix eigendecomposition,
we have the changed eigenvalues ∆Λ and eigenvector ∆U
by our proposed DyHNE at timestamp t + 1, (i.e., drop
the higher-order terms), and then we calculate the relative
approximation errors w.r.t. ommited the higher-order terms as
||(D+∆D)−1(L+∆L+λH+λ∆H)−(U(t)+∆U)(Λ(t)+∆Λ)(U(t)+∆U)>||2F

||(D+∆D)−1(L+∆L+λH+λ∆H)||2F
.

Let U
(t+1)
g and Λ

(t+1)
g denote the eigenvector and

eigenvalue of the recomputed factorization for matrix
(L + ∆L + λH + λ∆H)U

(t+1)
g = (D + ∆D)Λ

(t+1)
g U

(t+1)
g ,

then we can get the relative approximation er-
rors w.r.t. non-ommitted the higher-order terms as
||(D+∆D)−1(L+∆L+λH+λ∆H)−U(t+1)

g Λ(t+1)gU(t+1)
g

>||2F
||(D+∆D)−1(L+∆L+λH+λ∆H)||2F

. As
shown in Figure 7(a), we report the approximation error w.r.t.
Non-omitted and Omitted the higher-order terms on three datasets.
We can find that the approximation error is quite small with
respect to one timestamp update, which indicates the omission
of the higher-order terms in our DyHNE brings much little
error. Compared to the approximation error w.r.t. non-omitted
the higher-order terms, the approximation error w.r.t. omitted
is larger, which makes sense that losing high-level terms will
inevitably lead to information loss. However, the approximation
error is still quite small (< 1e− 5) which can be ignored.

On the other hand, we analyze the approximation error of task
performance with the learned embedding. Specifically, we conduct
two models, namely Non-omitted and Omitted models. The non-
omitted means that we keep the higher-order terms in the deriva-
tion, then our final model evolves into retraining on the whole
network as the HIN evolves. The omitted is actually our proposed
DyHNE model, which efficiently updates node embeddings when
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Fig. 8: New node classification. DyHNE means that the classifier
takes the learned embeddings of new nodes with DyHNE as input,
while StHNE means that the input of the classifier are the learned
embeddings of new nodes with StHNE.

TABLE 6: The approximation error that whether to omit higher-order
terms in DyHNE, w.r.t. node classification and relationship prediction.

Task Model Yelp DBLP AMiner

Classification Non-omitted 0.6922 0.9611 0.9521
Omitted 0.6893 0.9581 0.9212

(Mircro-F1) Error 0.004189 0.003124 0.032454

LinkPrediction Non-omitted 0.8364 0.9385 0.8939
Omitted 0.8346 0.9278 0.8821

(AUC) Error 0.002152 0.011401 0.013201

the HIN evolves. On three datasets, we report the results of node
classification and relationship prediction tasks in Table 6. As
shown in the table, we can find that the overall approximation error
is around 0.2% ∼ 3% on three datasets in two tasks (calculated as
(|Non-omitted − Omitted|)/Non-omitted). Compared with
not omitting higher-order terms, omitting higher-order terms leads
to a slight decrease in model performance on three datasets. The
approximation error on AMiner dataset is larger than that on the
other two datasets, we believe this is due to the large time span of
AMiner dataset. Overall, the approximation errors on all datasets
are small enough to be ignored. Hence, omitting the higher order
terms have limited effects on the accuracy of the learned node
embeddings.

5.7 New Node Classification

Since we assume that the newly-introduced nodes as isolated
nodes following the previous works [17], [33], we regard the
evolution of a network as the changes of edges in our proposed Dy-
HNE. In order to verify the effectiveness of the learned embedding
for these isolated nodes (i.e., newly-introduced nodes), we conduct
node classification task on the newly-introduced node embeddings.
After learning node embeddings with our StHNE (i.e., retraining
model on the whole HIN) and DyHNE (i.e., training model with
the dynamic HIN). We train a logistic classifier with 80% of the
learned newly-introduced node embeddings as input features, and
test the classifier with the rest data. The result in terms of Macro-
F1 and Micro-F1 is reported in Figure 8.

Obviously, we can find that our proposed DyHNE is capable
of achieving very competitive performance as StHNE. On Yelp
and DBLP datasets, the classifier can accurately classify the new
nodes with the updated embeddings by DyHNE, which indicates
the effectiveness of the our DyHNE in dealing with these isolated
nodes as we assumed. Even on AMiner with large time spans, the
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new node classification performance of DyHNE is slightly worse
than that of StHNE.

5.8 Parameter Analysis

5.8.1 Meta-paths fusion

Since we fuse multiple meta-paths with weights, we explore
the effect of different meta-paths on classification. Specifically,
we use a single meta-path to learn the node embeddings, then
weight meta-paths uniformly, and finally fuse meta-paths with
the optimal weights. As shown in Fig. 9, using a single meta-
path can not fully model the structure of HINs, leading to worse
performance. The performance of combining multiple meta-paths
with weights is improved. Since the structure and semantics of
different meta-paths are different, fusing them with non-uniform
weights achieves the best performance.

5.8.2 Dimension Selection

We investigate the sensitivity of the number of embedding di-
mension on node classification. Specifically, we vary the number
of embedding dimensions as 10, 20, 50, 100, 150 and 200. The
results of node classification are reported in Figure 10. As we
can see, the performance of our model improves with the increase
of the number of embedding dimensions, and the performance
tends to be stable once the dimension of the representation reaches
around 100. It is evident that our model are capable to capture
rich information of various relations in HINs using the low-
dimensional representation.

6 CONCLUSION

In this paper, we investigate the problem of dynamic HIN em-
bedding and propose a novel representation learning model for
dynamic HINs (DyHNE). Based on the designed static HIN
embedding model (StHNE), DyHNE captures the structure and
semantics by preserving the meta-path based first- and second-
order proximities. With the evolution of the dynamic HIN, DyHNE
incorporates the change of structure and semantics with meta-
path augmented adjacency matrices, and efficiently learns the
embedding of nodes based on perturbation theory. Experimental
evaluations show that DyHNE not only significantly outperforms
the state-of-the-arts, but also is much more efficient.
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