
Contrastive Pre-Training of GNNs on Heterogeneous Graphs
Xunqiang Jiang

Beijing University of Posts and Telecommunications
China

skd621@bupt.edu.cn

Yuanfu Lu
WeChat Search Application Department, Tencent Inc.

China
luyfroot@gmail.com

Yuan Fang
Singapore Management University

Singapore
yfang@smu.edu.sg

Chuan Shi∗
Beijing University of Posts and Telecommunications

China
shichuan@bupt.edu.cn

ABSTRACT
While graph neural networks (GNNs) emerge as the state-of-the-art
representation learning methods on graphs, they often require a
large amount of labeled data to achieve satisfactory performance,
which is often expensive or unavailable. To relieve the label scarcity
issue, some pre-training strategies have been devised for GNNs, to
learn transferable knowledge from the universal structural prop-
erties of the graph. However, existing pre-training strategies are
only designed for homogeneous graphs, in which each node and
edge belongs to the same type. In contrast, a heterogeneous graph
embodies rich semantics, as multiple types of nodes interact with
each other via different kinds of edges, which are neglected by
existing strategies. In this paper, we propose a novel Contrastive
Pre-Training strategy of GNNs on Heterogeneous Graphs (CPT-
HG), to capture both the semantic and structural properties in a
self-supervised manner. Specifically, we design semantic-aware
pre-training tasks at both the relation- and subgraph-levels, and
further enhance their representativeness by employing contrastive
learning. We conduct extensive experiments on three real-world
heterogeneous graphs, and promising results demonstrate the su-
perior ability of our CPT-HG to transfer knowledge to various
downstream tasks via pre-training.

CCS CONCEPTS
• Information systems→ Data mining.

KEYWORDS
Pre-training, heterogeneous graph, self-supervised learning

ACM Reference Format:
Xunqiang Jiang, Yuanfu Lu, Yuan Fang, and Chuan Shi∗. 2021. Contrastive
Pre-Training of GNNs on Heterogeneous Graphs. In Proceedings of the 30th
ACM International Conference on Information and Knowledge Management

∗corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8446-9/21/11. . . $15.00
https://doi.org/10.1145/3459637.3482332

Author (A) Paper (P)
Conference (C)

& Term (T)

𝑎1

𝑎2

𝑎3

𝑎4

𝑝1

𝑝2

𝑝3

𝑡1

𝑡2

𝑐1

𝑐2

𝑝1

𝑝2

𝑐1

𝑐2

𝑝3

𝑎1

𝑡1

𝑎2

(a) Relation-level pretext tasks on paper-author relation

Negative pairs

from wrong relation

， ， ; ， ;
，

Positive pair

 .Relation

Matrix

Similarity Contrastive loss

， ， ; ， ;
，

Negative pairs

from unconnected node

Similarity Contrastive loss

(b) Subgraph-level pretext tasks on Metagraph

Positive pair

𝑝1

𝑐1
𝑝3

𝑎2

Positive Semantic

neighborhoods

𝑝1

𝑐1 𝑎2 𝑝3

Negative Semantic neighborhoods Set

From previous metagraph instance

GNN

Pooling

GNN

Pooling

GNN

Pooling

Similarity

: paper

: author

: conference

: term

Contrastive loss

A metagraph instance

Paper

Conference

Author

Paper Paper

Author

Term

Paper

ℒ𝑟𝑒𝑙1

ℒ𝑟𝑒𝑙2

+ ℒ𝑟𝑒𝑙

ℒ 𝑠𝑢𝑏𝑔

An Example of Heterogeneous graph
𝑀1

Author (A) Paper (P) Conf. (C)

𝑎1

𝑎2

𝑎3

𝑎4

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑐2

𝑐1

Term (T)

𝑡1

𝑡2

𝑡3

𝑡4

P

T

C A

(a) An example of heterogeneous graph

(b) network schema (c) meta path

P C P

P A P

P

(d) meta graph

C

A

P P

T

A

P

M1 M2
(a) A heterogeneous graph

(b) Relation-level pre-training tasks

，
𝑝1 𝑎1

， ; ，
𝑝1 𝑐1 𝑝1 𝑡2

Negative pairs from wrong relation

;

， ;
，

𝑝1 𝑝1
;

𝑎2 𝑎3

Negative pairs from unconnected node

𝑝1

𝑐1

Similarity
Relation loss

ℒ𝑟𝑒𝑙

𝑎1
𝑝2

; ;

Negative Semantic neighborhoods

Meta graph instance 𝑐2 𝑡4 𝑎2 𝑝3 𝑎2 𝑡3

Similarity
Subgraph loss

ℒ𝑠𝑢𝑏

ℒ

(c) Subgraph-level pre-training tasks

𝑎1

𝑎2

𝑎3

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑐2

𝑐1

𝑡1

𝑡2

𝑡3

𝑡4

𝑎3

𝑎4

Similarity

𝑐2

𝑎1 𝑝2

Figure 1: A toy example of heterogeneous graph for biblio-
graphic data.

(CIKM ’21), November 1–5, 2021, Virtual Event, QLD, Australia. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3459637.3482332

1 INTRODUCTION
In recent years, graphs have become a powerful abstraction for rep-
resenting a wide variety of real-world datasets [41, 48, 50]. As an
emerging tool for performingmachine learning on graph-structured
data, graph neural networks (GNNs) learn powerful graph represen-
tations by recursively aggregating content (i.e., features or embed-
dings) from neighboring nodes, thus preserving both content and
structure information. They have been demonstrated to improve
the performance in various graph applications, such as node and
graph classification [10, 18], recommendation systems [7, 45] and
graph generation [21]. Generally, a GNN model is trained with
(semi-)supervised information in an end-to-end manner, requiring
a large volume and variety of labeled data for different downstream
tasks. However, in most real-world scenarios, abundant labeled data
are usually expensive and even infeasible to obtain, while there
exist a large amount of unlabeled data that is easily accessible.

To make full use of the unlabeled graph-structured data, some
recent effort takes inspiration from pre-training techniques in nat-
ural language processing [5, 20] and computer vision [3, 11], and
propose to pre-train a GNN model with self-supervised informa-
tion in a graph [13, 14, 28]. Broadly, we classify them into two
categories according to their training corpus: one is pre-training
on multiple graphs and then fine-tuning on a new unseen graph
for downstream tasks [13, 28], the other is pre-training on a part

https://doi.org/10.1145/3459637.3482332
https://doi.org/10.1145/3459637.3482332

of a large-scale graph while transferring learned knowledge to
downstream tasks on the remaining part [14]. For instance, Hu et
al. [13] present some GNN pre-training strategies for the setting
of multiple graphs, which utilizes both node-level and graph-level
self-supervised information in a series of graphs (e.g., molecular
structures in the biochemical domain). On the other hand, GPT-
GNN [14] introduces a self-supervised attributed graph generation
task to pre-train a GNN, which learns transferable knowledge some
parts of a large graph to facilitate the downstream tasks on other
parts of the graph with only a few labels. Although these GNN pre-
training methods achieve promising performance, all of them are
only designed for homogeneous graphs, in which each node or edge
belongs to the same type. In contrast, the so-called heterogeneous
graphs [31, 33, 34], where multiple types of nodes interact with
each other via different kinds of edges, are neglected by existing
strategies.

Objects in a complex interaction system can often be organized
into heterogeneous graphs [31, 34], which embody rich semantics
and distinct structures resulting from multiple types of nodes and
edges. As shown in Figure 1(a), a toy heterogeneous graph is con-
structed for bibliographic data, which consists of nodes of Author,
Paper, Conference and Term types, as well as edges of Author-
Paper, Paper-Conference and Paper-Term types. Different types
of nodes or edges often exhibit varying network properties such
as degree and clustering coefficient [23]. For instance, Conference
nodes generally have higher degrees than Author nodes. Moreover,
the heterogeneity gives rise to more complex semantic contexts
that involve multi-party relationships among a number of nodes,
such as {𝑝1, 𝑎1, 𝑐1, 𝑝2}, which describes the semantic context of
“two papers on similar topics from the same author”. Beyond the
toy example in bibliographic data, heterogeneous graphs are also
ubiquitous in a wide range of domains, such as in e-commerce with
users, products, brands and shops interacting in various ways, and
in biology where diseases, proteins and drugs relating to each other.
Given their prevalence and expressiveness, designing effective GNN
pre-training strategies for heterogeneous graphs becomes critical.
Challenges and present work. In this paper, we take the first
attempt to pre-train GNN models on a large heterogeneous graph,
utilizing the intrinsic semantic and structural information as self-
supervision. However, designing pre-training strategies of GNNs
for heterogeneous graph is a non-trivial problem, presenting us
with two key challenges.

(1) How to distinguish and tailor to different types of nodes and
edges during pre-training? Existing pre-training strategies for
GNNs [13, 14, 28] are only designed for homogeneous graphs,
which treat all nodes or edges uniformly. As different node and
edge types are the defining characteristics of a heterogeneous
graph, it is crucial to encode them into a universal basis intrinsic
to the graph, without dependence on any task-related label.

(2) How to further preserve high-order semantic contexts during pre-
training? As motivated in Figure 1(a), a heterogeneous graph
often embodies complex multi-party relationships involving a
number of nodes and edges. Existing pre-training approaches
usually utilize simple connectivity structures between node
pairs as self-supervised information, which cannot explain high-
order semantics on a heterogeneous graph. Hence, it is vital to

design more advanced structures for pre-training in order to
encode complex semantic contexts flexibly.
To tackle the above challenges, we develop a novel Constrastive

Pre-Training strategy of GNNs for Heterogeneous Graphs, named
CPT-HG, which preserves heterogeneity in terms of not only node
or edge differences individually, but also high-order semantic con-
texts amongmultiple nodes and edges collectively. More specifically,
for the first challenge, we design a relation-level pre-training task to
differentiate the relation type between two nodes of different types
(e.g., Author-Paper and Paper-Conference relations), to encode a
universal basis for downstream tasks. To enhance the represen-
tativeness of the relation-level samples, inspired by contrastive
learning [42], we propose to discriminate negative relation-level
samples from positive relation-level samples in a contrastive man-
ner. Specifically, we construct the negative relation-level samples
from two aspects: (1) negative samples from inconsistent relations
where two nodes share an “incorrect” relation distinct from the
positive relation, and (2) negative samples from unrelated nodes
where two nodes are not linked at all in the graph. To address the
second challenge, we propose a subgraph-level pre-training task on
a heterogeneous graph. The heterogeneity gives rise to high-order
structures such as meta paths [23, 34] and meta graphs [8, 16] that
are capable of capturing various semantic contexts, as shown in
Figure 1(c) and (d). Considering that meta graph is able to capture
richer and subtler semantics than meta path [49], in our subgraph-
level strategy, we employ meta graph, rather than meta path, to
generate subgraph instances including the positive samples and the
negative samples, such that the pre-training can encode high-order
semantic contexts that are also relevant to different downstream
tasks.

To summarize, we make the following major contributions in
this work.
• We address the under-explored setting of GNN pre-training on a
heterogeneous graph in a self-supervised manner.

• Wepropose a novel contrastive pre-training strategy for GNNs on
heterogeneous graphs, named CPT-HG, which leverages both the
relation- and subgraph-level pre-training tasks to contrastively
preserve the rich semantics as a form of transferable knowledge
for the downstream tasks.

• On three real-world heterogeneous graphs, we conduct exten-
sive experiments and analysis to demonstrate that our CPT-HG
significantly outperforms various state-of-the-art approaches.

2 RELATEDWORK
2.1 Graph Neural Network
In recent years, GNNs have received significant attention due to the
ability to model graph-structured data, which can naturally capture
both graph structures and feature information associated with the
graph [41, 48, 50]. Originally proposed, as a framework of utilizing
neural networks to learn node representations on graphs [24, 29],
GNN is extended to convolution neural networks using spectral
methods [2, 4, 43] and message passing architectures to aggregate
neighbors’ features [1, 10, 18, 26]. For example, Kipf et al. [18] have
proposed the graph convolutional networks via allocating first-
order approximation of spectral graph convolutions. Moreover,

graph attention networks have been proposed to learn the impor-
tance between nodes and its neighbors and fuse the neighbors to per-
form node classification [38]. Besides, some studies have attempted
to deploy the GNNs on a heterogeneous graph [15, 30, 40, 47]. Most
of these GNNmodels can be used as the base leaner for our proposed
pre-training framework.

2.2 Contrastive Learning
Contrastive learning has recently become a prominent technique in
unsupervised learning, which can achieve state-of-the-art results.
The key idea of contrastive learning is to contrast semantically
similar (positive) and dissimilar (negative) pairs of data points.
There are some methods based on mutual information that measure
the loss in the latent space by contrastive samples from different
distribution [32, 39]. Deep graph infomax [39] extends the deep
infomax [12] to graphs and obtains better performance in node
classification by learning node representations with the contrastive
node and graph encoding. Recently, in computer vision, various
frameworks [3, 11, 36] for contrastive learning have been proposed,
which design the self-supervised task to learn the representation
by distinguishing the similar images from the dissimilar ones. Con-
trastive learning is also utilized in our model to learn the heteroge-
neous information, and the loss function, called InfoNCE [37], is
employed in this paper for contrastive loss calculation.

2.3 Pre-training on Graphs
To enable more effective learning on graphs, researchers have ex-
plored how to pre-train GNNs for node-level representations on
unlabeled graph data. Inspired by pre-training techniques in nat-
ural language processing [5] and computer vision [3, 11], recent
studies [10, 14, 22, 28, 39, 46] have been proposed to pre-train GNNs
with self-supervised information. Navarin et al. [25] have utilized
the graph kernel for pre-training, while another work [13] have
propose different strategies to pre-train graph neural networks at
both node and graph levels, although labeled data are required at
the graph level. More recently, Hu et al. [14] have designed the
graph generation factorization to guide the base GNN model to
reconstruct both the attributes and structure of the input graph.
Qiu et al. [28] have proposed a contrastive pre-trained model to
capture the universal and transferable structural patterns from
multiple input graphs and You et al. [46] have proposed various
graph data augmentations to generate positive/negative samples
for conducting contrastive learning. Recently, Lu et al. [22] have
proposed a pre-training framework which leverages meta-learning
to reduce the gap between pre-training and fine-tuning. These
methods usually focus on homogeneous graphs, which can not be
directly applied for heterogeneous graph.

3 PRELIMINARY
In this section, we give some formal definitions of heterogeneous
graphs and related concepts, and formalize the problem of pre-
training on heterogeneous graphs.

Definition 3.1. HeterogeneousGraph. A heterogeneous graph [31],
denoted as G = {V, E,A,R, 𝜙, 𝜑}, is a form of graph, where V
and E denote the sets of nodes and edges, respectively. It is also
associated with a node type mapping function 𝜙 : V → A and an

edge type mapping function 𝜑 : E → R, where A and R denote
the sets of node and edge types such that |A| + |R| > 2.

The network schema 𝑇G = (A,R) of a heterogeneous graph
specifies type constraints on node objects and relationships between
the node objects. These constraints make a heterogeneous graph
semi-structured, guiding the exploration of the semantics of the
network [34].

An example of heterogeneous graph is illustrated in Figure 1(a)
on bibliographic data with the network schema in Figure 1(b). Ob-
serve that it consists of multiple node types (i.e., author, paper,
conference and term) and relation types (e.g., paper-author, paper-
conference).
Definition 3.2. Meta Path. A meta path P [34] is a path defined
on the network schema𝑇G = (A,R) of the heterogeneous graph G,

and is denoted in the form of 𝐴1
𝑅1−→ 𝐴2

𝑅2−→ · · · 𝑅𝑙−→ 𝐴𝑙+1, which
defines a composite relation 𝑅 = 𝑅1 ◦ 𝑅2 ◦ · · · ◦ 𝑅𝑙 between type 𝐴1
and 𝐴𝑙+1, where o denotes the composition operator on relations.

Meta path is a basic analysis tool for heterogeneous graphs,
which can extract sub-structure from heterogeneous graphs and
embody rich semantics. For example, as illustrated in Figure 1(c), the
meta path "Paper-Conference-Paper" (PCP) indicates the semantics
of two papers published in the same conference.
Definition 3.3. Meta Graph. A meta graph [8] can be repre-
sented as 𝑀 = (V𝑀 , E𝑀 ,A𝑀 ,R𝑀) , where V𝑀 ⊆ V , E𝑀 ⊆ E
constrained by A𝑀 ⊆ A and R𝑀 ⊆ R, respectively. On a hetero-
geneous graph G, let M = {𝑀1, 𝑀2, · · · , 𝑀 |M |} be a set of meta
graphs.

In contrast to meta path, a meta graph can be viewed as a com-
bination of multiple meta paths and embodies richer and subtler
semantics. On the other hand, a meta path can also be considered
as a special case of a meta graph. For example, in Figure 1(d), the
meta graph M1 (P-A/C-P) indicates the semantics of two papers on
similar topics from the same author, which can not indicated by a
single meta path.

In the paper, similar to the setting of pre-training strategy on
homogeneous graph [14], we pre-train the model on a part of large-
scale heterogeneous graph, while fine-tune the downstream task
on the remaining part.
Definition 3.4. Pre-training on Heterogeneous Graph. For a
heterogeneous graph G, we split the whole graph into two parts for
pre-training and fine-tuning. We denote the pre-training graph and
fine-tuning graph as G𝑝𝑟𝑒 and G 𝑓 𝑖𝑛𝑒 , respectively. The strategies
on heterogeneous graph largely follow a two-step paradigm: 1)
Pre-training the GNN 𝑓𝜃 based on the graph G𝑝𝑟𝑒 . The learned
parameter 𝜃 is expected to capture the semantic information and
structural properties as transferable knowledge. 2) Fine-tuning the
pre-trained GNNmodel with the initial parameter 𝜃 for downstream
tasks on the graph G 𝑓 𝑖𝑛𝑒 .

4 THE PROPOSED CPT-HG MODEL
In this section, we develop a novel contrastive pre-training strategy
for GNNs on a heterogeneous graph, which preserves the heteroge-
neous semantics at both the relation- and subgraph-level. Figure 2
presents the overall framework of our proposed CPT-HG. We de-
sign semantic-aware pre-training tasks at both the relation- and

Author (A) Paper (P)
Conference (C)

& Term (T)

𝑎1

𝑎2

𝑎3

𝑎4

𝑝1

𝑝2

𝑝3

𝑡1

𝑡2

𝑐1

𝑐2

𝑝1

𝑝2

𝑐1

𝑐2

𝑝3

𝑎1

𝑡1

𝑎2

(a) Relation-level pretext tasks on paper-author relation

Negative pairs

from wrong relation

， ， ; ， ;
，

Positive pair

 .Relation

Matrix

Similarity Contrastive loss

， ， ; ， ;
，

Negative pairs

from unconnected node

Similarity Contrastive loss

(b) Subgraph-level pretext tasks on Metagraph

Positive pair

𝑝1

𝑐1
𝑝3

𝑎2

Positive Semantic

neighborhoods

𝑝1

𝑐1 𝑎2 𝑝3

Negative Semantic neighborhoods Set

From previous metagraph instance

GNN

Pooling

GNN

Pooling

GNN

Pooling

Similarity

: paper

: author

: conference

: term

Contrastive loss

A metagraph instance

Paper

Conference

Author

Paper Paper

Author

Term

Paper

ℒ𝑟𝑒𝑙1

ℒ𝑟𝑒𝑙2

+ ℒ𝑟𝑒𝑙

ℒ 𝑠𝑢𝑏𝑔

An Example of Heterogeneous graph
𝑀1

Author (A) Paper (P) Conf. (C)

𝑎1

𝑎2

𝑎3

𝑎4

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑐2

𝑐1

Term (T)

𝑡1

𝑡2

𝑡3

𝑡4

P

T

C A

(a) An example of heterogeneous graph

(b) network schema (c) meta path

P C P

P A P

P

(d) meta graph

C

A

P P

T

A

P

M1 M2
(a) A heterogeneous graph

(b) Relation-level pre-training task

，
𝑝1 𝑎1

， ; ，
𝑝1 𝑐1 𝑝1 𝑡2

Negative samples from inconsistent relation

;

， ;
，

𝑝1 𝑝1
;

𝑎2 𝑎3

Negative samples from unrelated nodes

𝑝1

𝑐1

Similarity
Relation loss

ℒ𝑟𝑒𝑙

𝑎1
𝑝2

; ;

Queued Negative Samples

Meta graph instance 𝑐2 𝑡4 𝑎2 𝑝3 𝑎2 𝑡3

Similarity
Subgraph loss

ℒ𝑠𝑢𝑏

ℒ

(c) Subgraph-level pre-training task

𝑎1

𝑎2

𝑎3

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑐2

𝑐1

𝑡1

𝑡2

𝑡3

𝑡4

𝑎3

𝑎4

Similarity

𝑎1 𝑝2

Relation instance

𝑐1

𝑝1

𝑝2

𝑐1

𝑐2

𝑝3

𝑎1

𝑡1

𝑎2

: paper

: author

: term

: conference

Figure 2: The overall framework of CPT-HG.

subgraph-levels, and further enhance their representativeness by
employing contrastive learning. On the one hand, in Figure 2(b) we
design the relation-level pre-training task, in which two kinds of
negative relation-level samples are discriminated from the positive
relation-level sample, to encode the relational semantics which con-
stitute the basis of heterogeneity on a heterogeneous graph. On the
other hand, in Figure 2(c) we propose subgraph-level pre-training
tasks based on meta graphs to encode high-order semantic con-
texts. Finally, we jointly optimize the relation- and subgraph-level
pre-training tasks to encode richer and subtler semantics into the
transferable knowledge for downstream tasks.

4.1 Relation-level Pre-training Task
In existing methods, positive and negative nodes/edges are only
differentiated by network structures, such as through a perturba-
tion of the original graph structures and attributes [39]. However, a
heterogeneous graph brings rich semantics in multiple types of re-
lations, and thus it is crucial for the learned transferable knowledge
to encode such semantics for the downstream tasks.

Given a positive triple ⟨𝑢, 𝑅, 𝑣⟩ ∈ P𝑟𝑒𝑙 on a heterogeneous graph
G, nodes 𝑢 ∈ V and 𝑣 ∈ V are connected via relation instances of
type 𝑅 ∈ R, such as ⟨𝑝1, 𝑃-𝐴, 𝑎1⟩ in Figure 1(a). Here P𝑟𝑒𝑙 is the set
of positive triples for the pre-training task. We propose to construct
negative samples in two ways, including negative samples from
inconsistent relations and negative samples from unrelated nodes.
Negative Samples from Inconsistent Relations. Asmotivated,
on a heterogeneous graph, it is imperative to distinguish the positive
and negative samples under a specific relation, which retains the
relational semantics between two nodes. Thus, CPT-HG is designed
to have the ability of evaluating the “authenticity” w.r.t. a relation
𝑅 between a given pair of nodes 𝑢 and 𝑣 .

Given the positive triple ⟨𝑢, 𝑅, 𝑣⟩ ∈ P𝑟𝑒𝑙 , there exists a node𝑤
connecting with𝑢 under a relation type 𝑅− that is inconsistent with
𝑅. Thus, the triple ⟨𝑢, 𝑅−,𝑤⟩ represents a different semantic context

from ⟨𝑢, 𝑅, 𝑣⟩. For example, in Figure 2(a), the triple ⟨𝑝1, 𝑃-𝐴, 𝑎1⟩
under the relation 𝑃-𝐴 indicates that the paper 𝑝1 is written by the
author 𝑎1, while the relation 𝑃-𝐶 connecting papers and confer-
ences, e.g., ⟨𝑝1, 𝑃-𝐶, 𝑐1⟩, represents that the paper 𝑝1 is published
in the conference 𝑐1, which can be treated as a negative sample of
⟨𝑝1, 𝑃-𝐴, 𝑎1⟩. Thus, we construct the negative triples ⟨𝑢, 𝑅−,𝑤⟩ with
the inconsistent relation 𝑅− drawn from the inconsistent relation
set R− = R \ {𝑅}. Formally, for the positive triple ⟨𝑢, 𝑅, 𝑣⟩ ∈ P𝑟𝑒𝑙 ,
we define negative samples from inconsistent relations, denoted as
N𝑟𝑒𝑙 , as follows:

N𝑟𝑒𝑙
⟨𝑢,𝑅,𝑣⟩ =

{
⟨𝑢, 𝜑 (𝑢,𝑤),𝑤⟩|(𝑢,𝑤) ∈ E, 𝜑 (𝑢,𝑤) ∈ R−}, (1)

where nodes 𝑢 and𝑤 are connected via relation instances of type
𝑅− and we treat edge types as directed edge (e.g., P-A and A-P are
two different relation types). Due to the large scale ofN𝑟𝑒𝑙 , here we
uniformly sample a subset of N𝑟𝑒𝑙 for each inconsistent relations
to pre-train our model.
Negative Samples from Unrelated Nodes. To discriminate the
positive samples from unconnected structures, we further generate
negative samples from unrelated nodes. Existing negative sampling
methods simply select edges that is not in the graph [6]. However,
such negative samples are believed to be easily distinguishable
from the positive samples. Thus, we construct the negative samples
from the 𝑘-hop neighbors of node 𝑢. To be specific, given the pos-
itive triple ⟨𝑢, 𝑅, 𝑣⟩ ∈ P𝑟𝑒𝑙 , we define the negative samples from
unrelated nodes as:

N𝑛𝑜𝑑𝑒
⟨𝑢,𝑅,𝑣⟩ = {⟨𝑢, ∗, 𝑣−⟩|𝑣− ∈ V}. (2)

where 𝑣− is the the 𝑘-hop neighbors of node 𝑢 and ∗ means any
composite relation connecting 𝑢 and 𝑣−. In our implementation, we
set 𝑘 = 5 for negative samples from unrelated nodes.

We generate the negative samples from the above two strategies
to conduct contrastive learning. Thus, to capture the relation infor-
mation, we minimize the loss for a positive triple ⟨𝑢, 𝑅, 𝑣⟩ ∈ P𝑟𝑒𝑙

with two types of negative samples. For the negative samples with

an inconsistent relation, i.e., N𝑟𝑒𝑙 , we calculate the following con-
trastive loss:

L𝑟𝑒𝑙1 =
∑

⟨𝑢,𝑅,𝑣⟩∈P𝑟𝑒𝑙

− log
exp

(
h⊤𝑢W𝑅h𝑣

)∑
𝑖∈{𝑣 }∪{𝑤 | ⟨𝑢,𝑅−,𝑤 ⟩∈N𝑟𝑒𝑙

⟨𝑢,𝑅,𝑣⟩ }
exp

(
h⊤𝑢W𝑅h𝑖

) ,
(3)

whereW𝑅 ∈ R𝑑×𝑑 is a learnable relation weight matrix for relation
𝑅. Here h𝑢 indicates the representation vector of node 𝑢, which is
generated by any existing GNN architecture.

For the negative samples from unrelated nodes, i.e., N𝑛𝑜𝑑𝑒 , we
have the following loss function:

L𝑟𝑒𝑙2 =
∑

⟨𝑢,𝑅,𝑣⟩∈P𝑟𝑒𝑙

− log
exp

(
h⊤𝑢 hv

)∑
𝑖∈{𝑣 }∪{𝑣− | ⟨𝑢,∗,𝑣− ⟩∈N𝑛𝑜𝑑𝑒

⟨𝑢,𝑅,𝑣⟩ }
exp

(
h⊤𝑢 hi

) .
(4)

To integrate the information of the two types of negative samples,
we calculate the relation-level pre-training loss as:

L𝑟𝑒𝑙 = L𝑟𝑒𝑙1 + L𝑟𝑒𝑙2 . (5)

So far, we utilize relation discrimination for discovering and per-
severing the rich semantics in a heterogeneous graph at relation
level.

4.2 Subgraph-level Pre-training Task
In order to preserve the high-order semantic contexts on a heteroge-
neous graph, a natural idea is to employ meta paths to explore high-
order relations, thereby incorporating richer semantics [31, 34].
However, there are two weaknesses of the widely used meta paths
for pre-training GNNs on heterogeneous graphs: (1) Meta paths
have been shown to have limited ability to characterize rich seman-
tics and extract high-order structures, compared tometa graphs [16].
(2) Starting from a source node, the number of nodes a meta path
can reach is often too large, while the number of nodes a meta
graph from the same source node can cover is fewer due to a more
complex and restrictive structure, which makes meta graph more
efficient than meta path.

Therefore, we generate meta graph instances to construct the
positive samples, which capture the elaborate subgraph structure
and the subtle semantic information on a heterogeneous graph. Be-
sides, we take inspiration from computer vision [3, 11] to generate
queued negative samples and distinguish the positive and negative
samples with contrastive learning [37].
Structural Positive Samples. Given a meta graph 𝑀 ∈ M and
a source node 𝑢, we define and construct a meta graph instance
𝑚 ∈ I(𝑀) as a set of nodes surrounding 𝑢 such that they match
the meta graph𝑀 , where I(𝑀) denotes the set of all instances of
𝑀 . For example, in Figure 2(c), for the meta graph𝑀 = 𝑃-(𝐶/𝐴)-𝑃 ,
we have a meta graph instance as𝑚 = {𝑝1, 𝑐1, 𝑎1, 𝑝2}. Based on this
definition, we generate the meta graph-based structural positive
samples w.r.t. the source node 𝑢 as

P𝑠𝑢𝑏
𝑢 =

⋃
𝑚∈I(𝑀), 𝑀 ∈M

𝑚 \ {𝑢}, (6)

whereM is the set of pre-defined meta graphs. Here, we choose the
set of meta graphs with the domain knowledge [16]. Intuitively, the
structural positive samples capture not only denser local structural
connectivity, but also subtler semantic contexts.

Queued Negative Samples. To construct negative samples, in-
spired by the dynamic generation of negative samples [11], we
design queued negative samples. To be specific, based on positive
samples from previous batches in the training process, we generate
a negative sample by adding the positive sample from the most
recent batch and remove the oldest one. Assuming that the most
recent positive sample of the previous training is P𝑠𝑢𝑏

𝑖
(𝑡 − 1) w.r.t.

node 𝑖 , then we have the current negative samples as:

N𝑠𝑢𝑏 = [P𝑠𝑢𝑏
𝑖 (𝑡 − 1),P𝑠𝑢𝑏

𝑗 (𝑡 − 2), · · ·] . (7)

Note that we randomly initialize the queue of negative samples
and then update the queue during model training. For example,
in the Figure 2(c), the positive sample {𝑐1, 𝑎1, 𝑝2} will replace the
oldest negative sample in the next batch. It is worth noting that,
if the negative samples are generated by a random selection, they
are often easily distinguishable from the positive samples on the
ground that nodes in negative samples are very likely to be unre-
lated. Besides, different nodes may have the same structural positive
samples. For example, both node 𝑝1 and 𝑝3 have the same struc-
tural positive samples, e.g., {𝑐1, 𝑎1, 𝑝2} in Figure 2(a), which lead
to suboptimal contrastive learning. To prevent this situation, for
the subgraph-level pre-training task for node 𝑝1, we remove such
negative samples from the queue.

To incorporate high-order semantic contexts, we then model the
likelihood that the source node 𝑢 is associated with the positive
samples while unrelated with the negative samples as follows:

L𝑠𝑢𝑏 = −
∑
𝑢∈V

∑
𝑃+∈P𝑠𝑢𝑏

𝑢

log
exp

(
h⊤𝑢 𝑓 (𝑃+)

)∑
𝑃 ∈{𝑃+ }∪N𝑠𝑢𝑏 exp

(
h⊤𝑢 𝑓 (𝑃)

) , (8)

where 𝑓 (·) is a pooling function (e.g., mean pooling in our work)
for obtaining the representation of nodes. Intuitively, by optimizing
L𝑠𝑢𝑏 , CPT-HG is capable of capturing the semantic information
through high-order local structures on a heterogeneous graph.

4.3 Training and Optimization
Altogether, to capture the semantic information and preserve the
high-order structures at relation- and subgraph-levels, we minimize
the following loss for a heterogeneous graph G:

L = L𝑠𝑢𝑏 + 𝜆L𝑟𝑒𝑙 , (9)

where 𝜆 is a balancing coefficient. We adopt the Adam [17] opti-
mizer to train the proposed CPT-HG and repeat the relation- and
subgraph-levels pre-training tasks for more iterations until the
model converges.
Algorithm. The model training for CPT-HG is outlined in Algo-
rithm 1. Its basic idea is to generate the negative samples at both
levels for conducting contrastive learning. First, we initialize an
empty negative queue to store the previously-sampled structural
positive samples as more meaningful negative samples. Given node
𝑢 in the heterogeneous graph, we generate the negative relation-
level samples from inconsistent relations and unrelated nodes in
line 4. If we sample too many negative relation-level samples that
meet the condition in Eq. (1) and Eq. (2), we remove some negative
samples randomly if the number of negative samples exceeds the
maximum setting. After the negative sampling at the relation level,
we calculate the relation-level loss in line 5. Then, following the

Algorithm 1 Algorithm framework of CPT-HG
Require: Heterogeneous graph G, a GNN model 𝑓𝜃
1: Initialize model parameters 𝜃 with Xavier initialization
2: Randomly initialize queued negative samples N𝑠𝑢𝑏

3: for each node 𝑢 in G do
4: Generate the negative samples with Eq. (1) and Eq. (2)
5: Calculate L𝑟𝑒𝑙 by Eq. (5)
6: Generate the structural positive samples P𝑠𝑢𝑏

𝑢 with Eq. (6)
7: for each structural positive sample 𝑃+ ∈ P𝑠𝑢𝑏

𝑢 do
8: Calculate L𝑠𝑢𝑏 by Eq. (8)
9: end for
10: Update N𝑠𝑢𝑏 with the structural positive sample 𝑃+
11: end for
12: Calculate L by Eq. (9)
13: Update parameters 𝜃
14: return the GNN model 𝑓𝜃 ∗

predefined meta graphs, we generate the structural positive sam-
ples to preserve high-order semantic contexts. Then, we calculate
the subgraph-level loss for each structural positive samples. After
that, we progressively update the negative queue by adding the
latest structural positive samples and remove the oldest ones in line
10. Moreover, the structural samples extracted from different nodes
can bring in the high-order semantic contexts for contrastive learn-
ing. Then, we calculate the loss in Eq. (9) to capture the semantic
information and preserve the high-order structures. Afterwards,
we can obtain pre-trained model parameters for downstream tasks.
Discussion. The proposed pre-training framework can be univer-
sally applied to different GNN models since the pre-training tasks
are not related to the implementation of GNNs. In contrast to the
previous pre-training methods on a homogeneous graph, our ap-
proach can deal with various types of nodes and relations and fuse
rich semantic contexts on a heterogeneous graph. In particular, our
method can be applied to pre-train both heterogeneous [15, 30, 40]
and homogeneous [10, 18, 38] GNNs alike. Our semantics-aware
pre-training tasks directly enable homogeneous GNNs to capture
transferable semantics on the one hand, and further enhance hetero-
geneous GNNs in their semantic expressiveness and generalization
ability to downstream tasks on the other hand.

We next conduct a complexity analysis of our pre-training pro-
cedure. The time complexity consists of two parts: (1) the time com-
plexity of learning node representations with GNNs, which depends
on the architectures of the base GNN. Here, we denote it as 𝑋 ; (2)
the time complexity of generating pre-training tasks, which is linear
w.r.t. the number of the negative samples. We denote the number of
negative samples at both relation- and subgraph- levels as 𝑘1 and 𝑘2,
respectively. The average size of structural positive samples and pos-
itive triples is denoted as |P𝑠𝑢𝑏 | and |P𝑟𝑒𝑙 |, respectively. Thus, the
time complexity of our CPT-HG is𝑂

(
𝑋 + 𝑁

(
𝑘1 |P𝑟𝑒𝑙 | + 𝑘2 |P𝑠𝑢𝑏 |

)
𝑑2

)
,

where 𝑑 and 𝑁 is the embedding dimension and the number of
nodes, respectively.

5 EXPERIMENTS
In this section, we first conduct extensive experiments on three real-
world datasets to evaluate model performance, and then investigate
the underlying mechanism of CPT-HG with two ablated models
and different GNN architectures. Lastly, we explore the impact of
the model settings on task performance.

5.1 Experimental Settings
Dataset. We conduct experiments on three datasets, namely
DBLP [9], Yelp [44] and Aminer [35]. The detailed statistics of
three datasets are summarized in Table 1.
• DBLP is extracted from the computer science bibliography web-
site1. According to the domains of published papers, the authors
in DBLP are labeled with four research areas, including Database,
Data Mining, Artificial Intelligence, and Information Retrieval.

• Yelp is a widely used benchmark dataset, which contains a net-
work of businesses, users, locations and reviews from Yelp Inc2.

• Aminer is a bibliographic graphs3. The papers in Aminer are
labeled with 17 research fields, e.g., Artificial Intelligence, which
are used for node classification.

Pre-Training and Fine-Tuning Setting. We pre-train a GNN
model and adopt the pre-trained model weights to initialize models
for downstream tasks. Then we fine-tune the GNN models accord-
ing to the specific downstream tasks on an unseen fine-tuning graph
and evaluate the model performance. Specifically, for each dataset,
we randomly split the whole graph into two graphs for pre-training
and fine-tuning. In DBLP dataset, we randomly split DBLP into
pre-training and fine-tuning graphs which respectively contains
50% authors and the other associated nodes. In Yelp dataset, with
the ratio of 3:1 of Business node, we randomly split Yelp into pre-
training and fine-tuning graphs. In Aminer dataset, we construct
the pre-training graph from 11 random fields, and the left is the
fine-tuning graph.
Baselines. We compare our proposed CPT-HG with the state-of-
art baselines, including a no pre-train method, three graph neural
network based methods with unsupervised objectives (i.e., GAE,
EdgePred, DGI), and a pre-training method (i.e., GPT-GNN).
• No pre-train method adopts the GNN model to learn node rep-
resentations and then conducts downstream tasks on the fine-
tuning graph.

• GAE [19] focuses on a traditional link prediction task. It randomly
masks out a fixed proportion of the edges and train the model to
reconstruct these masked edges.

• EdgePred [10] predicts the connectivity of node pairs and forces
connected nodes to have similar node embeddings.

• DGI [39] maximizes local mutual information across the graph’s
patch representations.

• GPT-GNN [14] is a state-of-art model for pre-training GNNs,
which reconstructs the attributes and structure of the input graph
to learn the transferable knowledge from the input graph.
It is worth noting that our CPT-HG can be implemented for

different GNN models. Here, we mainly study HGT [15], the most
1https://dblp.uni-trier.de
2https://www.yelp.com/dataset
3https://www.aminer.cn/citation

Dataset #Node type #Nodes #Edge type #Edges

DBLP

Author (A)
Paper (P)
Term (T)
Venue (V)

4,057
16,670
13,420
40

P-A
P-V
P-T

19,645
16,670
133,039

Yelp

Business (B)
Location (L)
Star (S)
Term (T)

7,474
65
9

36,412

B-T
B-L
B-S
T-T

132,928
7,474
7,474
360,676

Aminer

Paper (P)
Author (A)

Conference (C)
Terms (T)

614,209
737,621
842

80,589

P-A
P-C
P-P
P-T

2,311,822
764,246
4,665,400
7,722,124

Table 1: Statistics of the three datasets.

expressive and state-of-the-art GNN architecture for heterogeneous
graphs. We also experiment with other popular architectures in
Section 5.3, including GCN [18], GAT [38], GraphSAGE [10] and
RGCN [30].
Parameter Settings. We implement our CPT-HGwith PyTorch [27]
and adopt Adaptive Moment Estimation (Adam) [17] optimizer to
train the proposed CPT-HG. In the pre-training procedure, we set
the dimension of node representation to 64, the number of the base
GNN layers to 2, and the head of attention to 1 for all methods.
The learning rate is arrange from [0.01, 0.008, 0.005, 0.001]. For the
balancing coefficient 𝜆 in Eq. (9), we set it as 0.5 in the pre-training
procedure. We use early stopping based the performance on vali-
dation set with a patience of 10 epochs for model training. For the
other parameters of the baselines, we optimize them empirically
under the guidance of literature. For our CPT-HG, the maximum
number of negative samples from inconsistent relations and un-
related nodes are set to 100 and 200, respectively. The maximum
number of queued negative samples at subgraph-level is set to 100.
In the pre-training procedure at both levels, we will remove some
negative samples randomly if the number of negative samples ex-
ceeds the maximum setting. During the experiment, we observe
that the number of negative samples, which are generated accord-
ing to the aforementioned rules, falls within the range of maximum
setting in most cases and thus the removal is usually needless to be
performed.
Evaluation Protocol. Following the previous work [14], we first
pre-train the model (including the baselines and our CPT-HG) by
utilizing the self-supervised information in the pre-training graph.
Then we fine-tune the pre-trained model with labeled information
in downstream tasks (e.g., link prediction). The downstream exper-
iments are run with 10 random seeds, and we report the average
experiment results and standard deviation on the test set.

5.2 Performance Comparison
In this section, we empirically compare CPT-HG to baselines in two
downstream tasks, including link prediction and node classification.

Link Prediction. After pre-training our CPT-HG and the base-
lines, we apply the pre-trained model on the fine-tuning graph
to predict edges. Specifically, we consider the prediction of Paper-
Term in DBLP dataset, Business-Location in Yelp dataset, as well as
Paper-Author and Paper-Conference in Aminer dataset. During the
fine-tuning process, we randomly divide the edges to be predicted
(e.g., Paper-Author in Aminer) with the ratio of 8:1:1 to construct
the training, validation and test sets. Following [30] , we randomly
sample the same number of unconnected node pairs as the training
set to serve as negative samples for model optimization. At last,
we minimize the cross-entropy loss to train the GNN model in
fine-tuning process, and evaluate the prediction performance with
MRR metric [14, 30].

Table 2 demonstrates the link prediction performance on three
datasets. Overall, our CPT-HG consistently yields the best perfor-
mance among all methods on three datasets, which brings an MRR
improvement by 2.16%–6.81% compared to the best baseline. The
significant improvement attributes to the structural and seman-
tics information modeling for heterogeneous graphs. Compared
to the no pre-train baseline, our CPT-HG significantly improves
the link prediction performance by 5.83%, 2.64% and 10.85% on
three datasets, respectively. The improvements suggest that the
contrastive pre-training on heterogeneous graphs is capable of
learning transferable and informative knowledge for the down-
stream tasks. Among different baselines, conventional graph neural
network based methods (e.g., GAE) achieve the unsatisfactory per-
formance due to the insufficient use of pre-training graphs. The
GPT-GNN performs better by generative pre-training on subgraphs,
so as to learn transferable knowledge. However, they still under-
perform our proposed CPT-HG. We believe the reason is that the
relation- and subgraph-level pre-training tasks allow our CPT-HG
to make full use of structures and semantics on a heterogeneous
graph.
NodeClassification. To evaluatemodel performance in node clas-
sification task, the node representation learned by the pre-trained
model is fed into a linear classifier to predict the node label. Fol-
lowing [30], we randomly split the labeled nodes with the ratio
of 1:2:7 for training, validation and test set. Since there is no label
information in Yelp dataset, here we conduct experiments on DBLP
and Aminer datasets, and adopt the accuracy as evaluation metric.

As presented in Table 3, we can find that CPT-HG performs con-
sistently much better than all baselines on two datasets. As observed
in link prediction tasks, no pre-train method is least competitive due
to the lack of rich information in pre-training subgraphs. Generally,
GNN based methods which combine the structure and feature infor-
mation, e.g., DGI, usually perform better than no pre-train method.
This indicates that the pre-training process with self-supervision
provides useful and discriminated information for node classifi-
cation. On DBLP dataset, we also observe that the baseline GAE
generally achieve better performance than other methods. The
reason might be that GAE mainly on modeling relations while re-
lations in DBLP brings much more effective information for node
representation than structural information.

Dataset Link Type No pre-train GAE EgePred DGI GPT-GNN CPT-HG Improv.

DBLP Paper-Term 12.34 ± 1.43 12.51 ± 0.71 12.61 ± 0.44 12.47 ± 0.68 12.71 ± 0.35 13.06 ± 0.42 2.75%

Yelp Business-Location 45.83 ± 0.42 45.92 ± 0.52 46.10 ± 0.31 45.57 ± 0.64 46.04 ± 0.75 47.04 ± 0.71 2.03%

Aminer Paper-Conference 39.23 ± 1.75 40.31 ± 0.78 39.86 ± 1.17 40.74 ± 1.35 41.37 ± 0.76 42.17 ± 1.23 1.93%
Paper-Author 5.63 ± 0.73 5.71 ± 0.41 5.62 ± 0.87 5.84 ± 0.52 6.02 ± 0.45 6.43 ± 0.54 6.81%

Table 2: Experiment results (MRR(%) ± std) in link prediction task on the three datasets. The best method is bolded, and the
second best is underlined.

Dataset Labeled Node Type No pre-train GAE EgePred DGI GPT-GNN CPT-HG Improve.

DBLP Author 87.45 ± 0.43 90.56 ± 0.73 89.24 ± 0.57 88.26 ± 0.66 89.57 ± 0.45 91.45 ± 0.54 0.98%

Aminer Paper 92.17 ± 0.56 92.72 ± 0.32 93.41 ± 0.46 92.37 ± 0.25 93.75 ± 0.67 96.32 ± 0.43 2.74%
Table 3: Experiment results (Accuracy(%) ± std) in the node classification task on DBLP and Aminer datasets. The best method
is bolded, and the second best is underlined.

Downstream Task Link Prediction Node Classification
Dataset DBLP Yelp Aminer DBLP Aminer

Link/Labeled Node Type Paper-Term Business-Location Paper-Conference Paper-Author Paper Author

No pre-train 12.34 ± 1.43 45.83 ± 0.42 39.23 ± 1.75 5.63 ± 0.73 87.45 ± 0.43 92.17 ± 0.56
CPT-HG𝑠𝑢𝑏 12.65 ± 0.42 47.15 ± 0.44 41.54 ± 0.33 6.04 ± 0.51 89.57 ± 0.61 94.14 ± 0.54
CPT-HG𝑟𝑒𝑙 12.79 ± 0.56 46.74 ± 0.65 41.75 ± 0.65 6.24 ± 0.15 92.45 ± 0.54 95.16 ± 0.32
CPT-HG 13.06 ± 0.42 47.04 ± 0.71 42.17 ± 1.23 6.43 ± 0.54 91.45 ± 0.54 96.32 ± 0.43

Table 4: Analysis of different ablated models in various downstream tasks.

5.3 Model Analysis
In this section, we investigate the underlying mechanism of CPT-
HG from two perspectives: the ablation study of relation and subgraph-
level pre-training tasks, as well as the generality analysis of CPT-HG
for different GNN architectures.
Ablation Study. We attempt to understand how relation-level
and subgraph-level pre-training tasks facilitate the contrastive pre-
training on heterogeneous graphs. Towards this end, we conduct
an ablation study and consider two ablated variants of CPT-HG
namely CPT-HG𝑠𝑢𝑏 and CPT-HG𝑟𝑒𝑙 . CPT-HG𝑠𝑢𝑏 only includes
the subgraph-level pre-training task for contrastive pre-training
that models structure properties on a heterogeneous graph, while
CPT-HG𝑟𝑒𝑙 only employs relation-level pre-training task to cap-
ture semantic information. In Table 4 and Figure 3, we report the
performance of two ablated models and the improvement over no
pre-train baseline in link prediction and node classification tasks.

Overall, all the comparison methods are better than no pre-
train baseline as they all achieve significant improvements in three
datasets. In particular, our complete CPT-HG achieves the greatest
improvement in most cases, indicating the necessary for jointly cap-
turing semantic relations and subgraph structures for pre-training
heterogeneous graphs. Compared to CPT-HG𝑠𝑢𝑏 , the improvement
brought by CPT-HG𝑟𝑒𝑙 is more significant. Despite CPT-HG𝑠𝑢𝑏

encodes structures of graphs, the semantic relations encoded in

P-T B-L P-C P-A
Link Type

0
2
4
6
8

10
12
14
16

Im
pr

ov
em

en
t (

%
)

CPT-HGsubg

CPT-HGrel

CPT-HG

(a) Link Prediction.

DBLP Aminer
Dataset

0

1

2

3

4

5

6
Im

pr
ov

em
en

t (
%

)
CPT-HGsubg

CPT-HGrel

CPT-HG

(b) Node Classification.

Figure 3: Improvement of different ablated models over no
pre-train baseline.

CPT-HG𝑟𝑒𝑙 seem more important for node representations in het-
erogeneous graph [23]. We also observe that CPT-HG𝑟𝑒𝑙 method
achieves the smallest improvement in Yelp dataset, which is reason-
able since relations in Yelp is less informative with small number
of different types of nodes, as shown in the statistic of Yelp dataset
in Table 1. On the other hand, CPT-HG𝑠𝑢𝑏 significantly improves
the link prediction performance by focusing on modeling subgraph
structures in a graph.
GNN Architecture Analysis. Since our proposed CPT-HG is
not limited to the architectures of GNNs, we further apply CPT-
HG to five GNN architectures, including two heterogeneous GNNs

Base Model No pre-train CPT-HG Improvement

HGT 5.63 ± 0.73 6.42 ± 0.54 14.0%
RGCN 4.15 ± 0.43 4.49 ± 0.50 7.55%

GCN 4.79 ± 0.81 5.14 ± 0.62 7.31%
GAT 4.83 ± 0.77 4.32 ± 0.89 -10.6%

GraphSAGE 5.47 ± 0.52 6.02 ± 0.62 10.24%
Table 5: Analysis of different GNN architectures in link pre-
diction on Aminer dataset.

Model Accuracy Improvement

No pre-train 92.17 ± 0.56 -

CPT-HG𝑃𝐴𝑃 91.52 ± 0.56 -0.7%
CPT-HG𝑃𝐶𝑃 90.45 ± 0.41 -1.9%
CPT-HG𝑃𝐴𝑇𝑃 93.12 ± 0.52 +1.0%
CPT-HG𝑃𝐴𝐶𝑃 94.71 ± 0.46 +2.6%

CPT-HG 96.32 ± 0.56 +4.5%
Table 6: Analysis of different meta graphs in node classifica-
tion on Aminer dataset.

(i.e., HGT, RGCN) and there homogeneous GNNs (i.e., GCN, GAT,
GraphSAGE), for studying the universality of CPT-HG. Since similar
trends are observed in the three datasets, here we only report the
link prediction performance on the largest Aminer dataset.

As presented in Table 5, our proposed CPT-HG is capable of
enhancing the downstream task performance for most GNN ar-
chitectures. Besides, the pre-trained HGT achieves the best perfor-
mance gain among all the GNN models. We think the reason is
that CPT-HG can enhance the GNN model performance with the
transferable semantic and structural properties on heterogeneous
graph. We also observe that the pre-trained GAT obtains an unsat-
isfactory performance and the reason may be that it’s intractable to
learn a proper attention heads between pre-training and fine-tuning
graphs, and thus it performs worse than no pre-train model.

5.4 Experimental Setting Analysis
Lastly, we investigate the impact of experimental settings on the
model performance, including the impact of meta graphs and the
size of the pre-training subgraph. Similar to previous analysis, we
showcase the results on Aminer dataset since the observations are
similar in other datasets.
Impact ofMeta Graphs. Following some previous works [16, 49],
we empirically validate the performance of CPT-HG with different
meta graphs, including PAP, PCP, PATP and PACP. For example,
we only utilize the meta graph PAP to conduct the subgraph-level
pre-training tasks, denoted as CPT-HG𝑃𝐴𝑃 and we utilize all meta
graphs for our original CPT-HG. In Table 6, we report the results of
different meta graphs compared to the original model. We observe
that pre-training our CPT-HGwith some meta graphs (e.g., PAP and
PCP) hardly learns semantics and structures on a heterogeneous
graph and even reduces the model performance. As the structure

Percentage MRR Improvement

No pre-train 5.63 ± 0.56 -

10% 5.54 ± 0.16 -1.5%
50% 5.87 ± 0.41 +4.2%
100% 6.43 ± 0.56 +14.0%

Table 7: Compare the pre-training performance Gain with
different percentage of pre-training datasets. Evaluate the
Paper-Author link prediction on Aminer.

of the meta graph becomes more complex (e.g., PACP), our CPT-
HG achieves more performance gains by encoding more structural
information in a graph. In all, the CPT-HG with meta graphs (i.e.,
PATP and PACP) achieves the best and significant performance
improvement due to preserving more rich and subtle semantics,
which confirms the benefit of meta graph employed in CPT-HG .
Impact of Pre-training Subgraph Size. We also explore how
the size of pre-training subgraph would affect the model perfor-
mance, and we utilize {10%, 50%, 100%} percentages of pre-training
subgraphs to pre-train the base GNN for downstream tasks. The
fine-tuning setting is the same as that in Section 5.2 for fair compar-
ison. In Table 7, we observe that CPT-HG consistently improves the
link prediction performance with more pre-training dataset. When
the pre-training subgraph is much small (e.g., 10%), our CPT-HG
hardly learns useful semantic and structural information for the
downstream task, leading to poor performance. This phenomenon
demonstrates that the superiority of GNN pre-training requires a
large-scale pre-training subgraph.

6 CONCLUSION AND FUTUREWORK
In this work, we took the first attempt to pre-train GNN mod-
els on a heterogeneous graph, and presented a novel contrastive
pre-training strategy for GNNs on heterogeneous graphs, named
CPT-HG. To capture the semantic and structural information on
the graph in a transferable form, we leverage both the relation-
and subgraph-level pre-training tasks through contrastive learning,
which utilize self-supervised information intrinsic to heterogeneous
graphs. At the relation level, we designed a pre-training task to
differentiate the relation type between two nodes, which encodes
the fundamental characteristics of a heterogeneous graph. At the
subgraph-level, we proposed a pre-training task to differentiate
the subgraph instances of different meta graphs, which encodes
the high-order semantic contexts. Extensive experiments on three
real-world heterogeneous graphs demonstrated promising results
and the superior ability of our CPT-HG to transfer knowledge to
various downstream tasks via pre-training.

7 ACKNOWLEDGMENTS
This work is supported in part by the National Natural Science
Foundation of China (No. U20B2045, 61772082, 61702296, 62002029)
and the Agency for Science, Technology and Research (A*STAR)
under its AME Programmatic Funds (Grant No. A20H6b0151). All
opinions, findings, conclusions and recommendations are those of
the authors and do not reflect the views of the funding agencies.

REFERENCES
[1] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina

Lerman, Hrayr Harutyunyan, Greg Ver Steeg, and Aram Galstyan. 2019. MixHop:
Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood
Mixing. In ICML. 21–29.

[2] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2014. Spectral
Networks and Locally Connected Networks on Graphs. In ICLR.

[3] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. 2020.
A Simple Framework for Contrastive Learning of Visual Representations. In
ICML.

[4] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional Neural Networks on Graphs with Fast Localized Spectral Filtering. In NIPS.
3837–3845.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
NAACL-HLT. 4171–4186.

[6] Yuxiao Dong, Nitesh V. Chawla, and Ananthram Swami. 2017. metapath2vec:
Scalable Representation Learning for Heterogeneous Networks. In SIGKDD. 135–
144.

[7] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.
2019. Graph Neural Networks for Social Recommendation. In arXiv preprint
arXiv:1902.07243.

[8] Yuan Fang, Wenqing Lin, Vincent W Zheng, Min Wu, Kevin Chen-Chuan Chang,
and Xiao-Li Li. 2016. Semantic proximity search on graphs with metagraph-based
learning. In 2016 IEEE 32nd International Conference on Data Engineering (ICDE).
IEEE, 277–288.

[9] Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. 2020. MAGNN: Metapath
Aggregated Graph Neural Network for Heterogeneous Graph Embedding. In
WWW. 2331–2341.

[10] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NeurIPS. 1024–1034.

[11] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross B. Girshick. 2020.
Momentum Contrast for Unsupervised Visual Representation Learning. In CVPR.
9726–9735.

[12] R. Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Philip
Bachman, Adam Trischler, and Yoshua Bengio. 2019. Learning deep representa-
tions by mutual information estimation and maximization. In ICLR.

[13] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay S.
Pande, and Jure Leskovec. 2020. Strategies for Pre-training Graph Neural Net-
works. In ICLR.

[14] Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. 2020.
GPT-GNN: Generative Pre-Training of Graph Neural Networks. In SIGKDD. 1857–
1867.

[15] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous
Graph Transformer. In WWW. 2704–2710.

[16] ZhipengHuang, Yudian Zheng, Reynold Cheng, Yizhou Sun, NikosMamoulis, and
Xiang Li. 2016. Meta Structure: Computing Relevance in Large Heterogeneous
Information Networks. In SIGKDD. 1595–1604.

[17] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In ICLR.

[18] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. In ICLR.

[19] Thomas N. Kipf and Max Welling. 2016. Variational Graph Auto-Encoders. In
CoRR, Vol. abs/1611.07308.

[20] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. 2020. ALBERT: A Lite BERT for Self-supervised
Learning of Language Representations. In ICLR.

[21] Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter W Battaglia. 2018.
Learning Deep Generative Models of Graphs. In ICLR.

[22] Yuanfu Lu, Xunqiang Jiang, Yuan Fang, and Chuan Shi. 2021. Learning to Pre-train
Graph Neural Networks. (2021).

[23] Yuanfu Lu, Chuan Shi, Linmei Hu, and Zhiyuan Liu. 2019. Relation Structure-
Aware Heterogeneous Information Network Embedding. In AAAI. 4456–4463.

[24] Gori Marco, Monfardini Gabriele, and Scarselli Franco. 2005. A new model for
learning in graph domains. In Proceedings of IJCNN. 729–734.

[25] Nicolò Navarin, Dinh Van Tran, and Alessandro Sperduti. 2018. Pre-training
Graph Neural Networks with Kernels. In CoRR, Vol. abs/1811.06930.

[26] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning
Convolutional Neural Networks for Graphs.. In ICML. 2014–2023.

[27] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In NIPS, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett (Eds.).

[28] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding,
Kuansan Wang, and Jie Tang. 2020. GCC: Graph Contrastive Coding for Graph
Neural Network Pre-Training. In SIGKDD. 1150–1160.

[29] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele
Monfardini. 2009. The Graph Neural Network Model. In IEEE TNN. 61–80.

[30] Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg,
Ivan Titov, and Max Welling. 2018. Modeling Relational Data with Graph Convo-
lutional Networks. In ESWC. 593–607.

[31] Chuan Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, and Philip S. Yu. 2017. A Survey
of Heterogeneous Information Network Analysis. In TKDE. 17–37.

[32] Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. 2020. InfoGraph:
Unsupervised and Semi-supervised Graph-Level Representation Learning via
Mutual Information Maximization. In ICLR.

[33] Yizhou Sun and Jiawei Han. 2012. Mining heterogeneous information networks:
a structural analysis approach. In SIGKDD Explor. 20–28.

[34] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S. Yu, and Tianyi Wu. 2011. Path-
Sim: Meta Path-Based Top-K Similarity Search in Heterogeneous Information
Networks. In VLDB. 992–1003.

[35] Jie Tang. 2016. AMiner: Mining Deep Knowledge from Big Scholar Data. In
WWW. 373.

[36] Yonglong Tian, Dilip Krishnan, and Phillip Isola. 2019. Contrastive Multiview
Coding. In CoRR, Vol. abs/1906.05849.

[37] Aäron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation Learning
with Contrastive Predictive Coding. In CoRR, Vol. abs/1807.03748.

[38] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. In arXiv preprint
arXiv:1710.10903.

[39] Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio,
and R. Devon Hjelm. 2019. Deep Graph Infomax. In ICLR.

[40] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S.
Yu. 2019. Heterogeneous Graph Attention Network. In WWW. 2022–2032.

[41] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. 2020. A Comprehensive
Survey on Graph Neural Networks. In TNNLS. 1–21.

[42] Zhirong Wu, Yuanjun Xiong, Stella X. Yu, and Dahua Lin. 2018. Unsupervised
Feature Learning via Non-Parametric Instance Discrimination. In CVPR. 3733–
3742.

[43] Bingbing Xu, Huawei Shen, Qi Cao, Yunqi Qiu, and Xueqi Cheng. 2019. Graph
Wavelet Neural Network. In ICLR.

[44] Carl Yang, Yuxin Xiao, Yu Zhang, Yizhou Sun, and Jiawei Han. 2020. Heteroge-
neous Network Representation Learning: Survey, Benchmark, Evaluation, and
Beyond. In CoRR, Vol. abs/2004.00216.

[45] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In SIGKDD. 974–983.

[46] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and
Yang Shen. 2020. Graph contrastive learning with augmentations. NIPS 33 (2020).

[47] Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V.
Chawla. 2019. Heterogeneous Graph Neural Network. In SIGKDD. 793–803.

[48] Ziwei Zhang, Peng Cui, and Wenwu Zhu. 2020. Deep Learning on Graphs: A
Survey. In TKDE.

[49] Huan Zhao, Quanming Yao, Jianda Li, Yangqiu Song, and Dik Lun Lee. 2017.
Meta-Graph Based Recommendation Fusion over Heterogeneous Information
Networks. In SIGKDD. 635–644.

[50] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and Maosong
Sun. 2018. Graph Neural Networks: A Review of Methods and Applications. In
CoRR, Vol. abs/1812.08434.

	Abstract
	1 Introduction
	2 Related work
	2.1 Graph Neural Network
	2.2 Contrastive Learning
	2.3 Pre-training on Graphs

	3 Preliminary
	4 The Proposed CPT-HG Model
	4.1 Relation-level Pre-training Task
	4.2 Subgraph-level Pre-training Task
	4.3 Training and Optimization

	5 Experiments
	5.1 Experimental Settings
	5.2 Performance Comparison
	5.3 Model Analysis
	5.4 Experimental Setting Analysis

	6 Conclusion and Future Work
	7 ACKNOWLEDGMENTS
	References

