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Abstract

Heterogeneous information network (HIN) embedding aims
to embed multiple types of nodes into a low-dimensional
space. Although most existing HIN embedding methods con-
sider heterogeneous relations in HINs, they usually employ
one single model for all relations without distinction, which
inevitably restricts the capability of network embedding. In
this paper, we take the structural characteristics of heteroge-
neous relations into consideration and propose a novel Re-
lation structure-aware Heterogeneous Information Network
Embedding model (RHINE). By exploring the real-world net-
works with thorough mathematical analysis, we present two
structure-related measures which can consistently distinguish
heterogeneous relations into two categories: Affiliation Re-
lations (ARs) and Interaction Relations (IRs). To respect the
distinctive characteristics of relations, in our RHINE, we pro-
pose different models specifically tailored to handle ARs and
IRs, which can better capture the structures and semantics of
the networks. At last, we combine and optimize these mod-
els in a unified and elegant manner. Extensive experiments
on three real-world datasets demonstrate that our model sig-
nificantly outperforms the state-of-the-art methods in various
tasks, including node clustering, link prediction, and node
classification.

1 Introduction
Network embedding has shed a light on the analysis of net-
works as it is effective to learn the latent features that encode
the properties of a network (Cui et al. 2018; Cai, Zheng, and
Chang 2018). Although the state-of-the-arts (Perozzi, Al-
Rfou, and Skiena 2014; Grover and Leskovec 2016; Tang et
al. 2015; Wang, Cui, and Zhu 2016) have achieved promis-
ing performance in many data mining tasks, most of them
focus on homogeneous networks, which only contain one
single type of nodes and edges. In reality, many networks
are usually with multiple types of nodes and edges, widely
known as heterogeneous information networks (HINs) (Sun
et al. 2011; Shi et al. 2017). Taking the DBLP network for
example, as shown in Figure 1(a), it contains four types of
nodes: Author (A), Paper (P), Conference (C) and Term (T),
and multiple types of relations: writing/written relations, and
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Figure 1: The illustration of an HIN and the compari-
son between conventional methods and our method (non-
differentiated relations v.s. differentiated relations).

publish/published relations, etc. In addition, there are com-
posite relations represented by meta-paths (Sun et al. 2011)
such as APA (co-author relation) and APC (authors write pa-
pers published in conferences), which are widely used to
exploit rich semantics in HINs. Thus, compared to homo-
geneous networks, HINs fuse more information and contain
richer semantics. Directly applying traditional homogeneous
models to embed HINs will inevitably lead to reduced per-
formance in downstream tasks.

To model the heterogeneity of networks, several attempts
have been done on HIN embedding. For example, some
models employ meta-path based random walk to gener-
ate node sequences for optimizing the similarity between
nodes (Shang et al. 2016; Dong, Chawla, and Swami 2017;
Fu, Lee, and Lei 2017). Some methods decompose the HIN
into simple networks and then optimize the proximity be-
tween nodes in each sub-network (Tang, Qu, and Mei 2015;
Xu et al. 2017; Shi et al. 2018). There are also some neural
network based methods that learn non-linear mapping func-
tions for HIN embedding (Chang et al. 2015; Zhang et al.
2017; Wang et al. 2018; Han et al. 2018). Although these
methods consider the heterogeneity of networks, they usu-
ally have an assumption that one single model can handle all
relations and nodes, through keeping the representations of



two nodes close to each other, as illustrated in Figure 1(b).
However, various relations in an HIN have significantly

different structural characteristics, which should be handled
with different models. Let’s see a toy example in Figure 1(a).
The relations in the network include atomic relations (e.g.,
AP and PC) and composite relations (e.g., APA and APC).
Intuitively, AP relation and PC relation reveal rather differ-
ent characteristics in structure. That is, some authors write
some papers in the AP relation, which shows a peer-to-
peer structure. While that many papers are published in one
conference in the PC relation reveals the structure of one-
centered-by-another. Similarly, APA and APC indicate peer-
to-peer and one-centered-by-another structures respectively.
The intuitive examples clearly illustrate that relations in an
HIN indeed have different structural characteristics.

It is non-trivial to consider different structural character-
istics of relations for HIN embedding, due to the following
challenges: (1) How to distinguish the structural character-
istics of relations in an HIN? Various relations (atomic re-
lations or meta-paths) with different structures are involved
in an HIN. Quantitative and explainable criteria are desired
to explore the structural characteristics of relations and dis-
tinguish them. (2) How to capture the distinctive structural
characteristics of different categories of relations? Since the
various relations have different structures, modeling them
with one single model may lead to some loss of information.
We need to specifically design appropriate models which are
able to capture their distinctive characteristics. (3) The dif-
ferent models for the differentiated relations should be easily
and smoothly combined to ensure simple optimization in a
unified manner.

In this paper, we present a novel model for HIN em-
bedding, named Relation structure-aware HIN Embedding
(RHINE). In specific, we first explore the structural char-
acteristics of relations in HINs with thorough mathematical
analysis, and present two structure-related measures which
can consistently distinguish the various relations into two
categories: Affiliation Relations (ARs) with one-centered-
by-another structures and Interaction Relations (IRs) with
peer-to-peer structures. In order to capture the distinctive
structural characteristics of the relations, we then propose
two specifically designed models. For ARs where the nodes
share similar properties (Yang and Leskovec 2012), we cal-
culate Euclidean distance as the proximity between nodes,
so as to make the nodes directly close in the low-dimensional
space. On the other hand, for IRs which bridge two compati-
ble nodes, we model them as translations between the nodes.
Since the two models are consistent in terms of mathemati-
cal form, they can be optimized in a unified and elegant way.

It is worthwhile to highlight our contributions as follows:

• To the best of our knowledge, we make the first attempt to
explore the different structural characteristics of relations
in HINs and present two structure-related criteria which
can consistently distinguish heterogeneous relations into
ARs and IRs.

• We propose a novel relation structure-aware HIN embed-
ding model (RHINE), which fully respects the distinctive
structural characteristics of ARs and IRs by exploiting ap-

propriate models and combining them in a unified and el-
egant manner.

• We conduct comprehensive experiments to evaluate the
performance of our model. Experimental results demon-
strate that our model significantly outperforms state-of-
the-art network embedding models in various tasks.

2 Related Work
Recently, network embedding has attracted considerable at-
tention. Inspired by word2vec (Mikolov et al. 2013b), ran-
dom walk based methods (Perozzi, Al-Rfou, and Skiena
2014; Grover and Leskovec 2016) have been proposed to
learn representations of networks by the skip-gram model
(Mikolov et al. 2013a). After that, several models are de-
signed to better preserve network properties (Tang et al.
2015; Cao, Lu, and Xu 2015; Ou et al. 2016; Tu et al. 2016;
Ribeiro, Saverese, and Figueiredo 2017). Besides, there are
some deep neural network based models for network em-
bedding (Wang, Cui, and Zhu 2016; Cao, Lu, and Xu 2016).
However, all the aforementioned methods focus only on
learning the representations of homogeneous networks.

Different from homogeneous networks, HINs consist of
multiple types of nodes and edges. Several attempts have
been done on HIN embedding and achieved promising per-
formance in various tasks (Tang, Qu, and Mei 2015; Chang
et al. 2015; Shang et al. 2016; Fu, Lee, and Lei 2017; Wang
et al. 2018; Shi et al. 2018). PTE (Tang, Qu, and Mei 2015)
decomposes an HIN to a set of bipartite networks and then
performs network embedding individually. ESim (Shang et
al. 2016) utilizes user-defined meta-paths as guidance to
learn node embeddings. Metapath2vec (Dong, Chawla, and
Swami 2017) combines meta-path based random walks and
skip-gram model for HIN embedding. HIN2Vec (Fu, Lee,
and Lei 2017) learns the embeddings of HINs by conduct-
ing multiple prediction training tasks jointly. HERec (Shi et
al. 2018) filters the node sequences with type constraints and
thus captures the semantics of HINs.

All the above-mentioned models deal with all relations in
HINs with one single model, neglecting differentiated struc-
tures of relations. In this paper, we explore and distinguish
the structural characteristics of relations with quantitative
analysis. For relations with distinct structural characteris-
tics, we propose to handle them with specifically designed
models.

3 Preliminaries
In this section, we introduce some basic concepts and for-
malize the problem of HIN embedding.
Definition 1. Heterogeneous Information Network (HIN).
An HIN is defined as a graph G = (V,E, T, φ, ϕ), in which
V and E are the sets of nodes and edges, respectively. Each
node v and edge e are associated with their type mapping
functions φ : V → TV and ϕ : E → TE , respectively.
TV and TE denote the sets of node and edge types, where
|TV |+ |TE | > 2, and T = TV ∪ TE .
Definition 2. Meta-path. A meta-path m ∈ M is defined as
a sequence of node types tvi or edge types tej in the form



Table 1: Statistics of the three datasets. tu denotes the type of node u, 〈u, r, v〉 is a node-relation triple.

Datasets Nodes Number of Relations Number of Avg. Degree Avg. Degree Measures Relation
Nodes (tu ∼ tv) Relations of tu of tv D(r) S(r) Category

DBLP

Term (T)
Paper (P)

Author (A)
Conference (C)

8,811
14,376
14,475

20

PC
APC
AP
PT

APT

14,376
24,495
41,794
88,683
260,605

1.0
2.9
2.8
6.2

18.0

718.8
2089.7

2.9
10.7
29.6

718.8
720.6
1.0
1.7
1.6

0.05
0.085

0.0002
0.0007
0.002

AR
AR
IR
IR
IR

Yelp

User (U)
Service (S)

Business (B)
Star Level (L)

Reservation (R)

1,286
2

2,614
9
2

BR
BS
BL
UB

BUB

2,614
2,614
2,614

30,838
528,332

1.0
1.0
1.0

23.9
405.3

1307.0
1307.0
290.4
11.8

405.3

1307.0
1307.0
290.4
2.0
1.0

0.5
0.5
0.1

0.009
0.07

AR
AR
AR
IR
IR

AMiner

Paper (P)
Author (A)

Reference (R)
Conference (C)

127,623
164,472
147,251

101

PC
APC
AP
PR

APR

127,623
232,659
355,072
392,519

1,084,287

1.0
2.2
2.2
3.1
7.1

1263.6
3515.6

2.8
2.7
7.9

1264.6
1598.0

1.3
1.1
1.1

0.01
0.01

0.00002
0.00002
0.00004

AR
AR
IR
IR
IR

of tv1
te1−→ tv2 ...

tel−→ tvl+1
(abbreviated as tv1tv2 ...tvl+1 ),

which describes a composite relation between v1 and vl+1.
Definition 3. Node-Relation Triple. In an HIN G, relations
R include atomic relations (e.g., links) and composite rela-
tions (e.g., meta-paths). A node-relation triple 〈u, r, v〉 ∈ P ,
describes that two nodes u and v are connected by a relation
r ∈ R. Here P represents the set of all node-relation triples.
Example 1. For example, as shown in Figure 1(a),
〈a2, APC, c2〉 is a node-relation triple, meaning that a1
writes a paper published in c2.
Definition 4. Heterogeneous Information Network Embed-
ding. Given an HIN G = (V , E, T , φ, ϕ) , the goal of HIN
embedding is to develop a mapping function f : V → Rd

that projects each node v ∈ V to a low-dimensional vector
in Rd, where d� |V |.

4 Structural Characteristics of Relations
In this section, we first describe three real-world HINs and
analyze the structural characteristics of relations in HINs.
Then we present two structure-related measures which can
consistently distinguish various relations quantitatively.

4.1 Dataset Description
Before analyzing the structural characteristics of relations,
we first briefly introduce three datasets used in this paper,
including DBLP1, Yelp2 and AMiner3(Tang et al. 2008). The
detailed statistics of these datasets are illustrated in Table 1.

DBLP is an academic network, which contains four types
of nodes: author (A), paper (P), conference (C) and term (T).
We extract node-relation triples based on the set of relations
{AP, PC, PT, APC, APT}. Yelp is a social network, which
contains five types of nodes: user (U), business (B), reser-
vation (R), service (S) and star level (L). We consider the
relations {BR, BS, BL, UB, BUB}. AMiner is also an aca-
demic network, which contains four types of nodes, includ-

1https://dblp.uni-trier.de
2https://www.yelp.com/dataset/
3https://www.aminer.cn/citation

ing author (A), paper (P), conference (C) and reference (R).
We consider the relations {AP, PC, PR, APC, APR}. No-
tice that we can actually analyze all the relations based on
meta-paths. However, not all meta-paths have a positive ef-
fect on embeddings (Sun et al. 2013). Hence, following pre-
vious works (Shang et al. 2016; Dong, Chawla, and Swami
2017), we choose the important and meaningful meta-paths.

4.2 Affiliation Relations and Interaction
Relations

In order to explore the structural characteristics of relations,
we present mathematical analysis on the above datasets.

Since the degree of nodes can well reflect the structures of
networks (Wasserman and Faust 1994), we define a degree-
based measure D(r) to explore the distinction of various re-
lations in an HIN. Specifically, we compare the average de-
grees of two types of nodes connected with the relation r,
via dividing the larger one by the smaller one (D(r) ≥ 1).
Formally, given a relation r with nodes u and v (i.e., node
relation triple 〈u, r, v〉), tu and tv are the node types of u and
v, we define D(r) as follows:

D(r) =
max [d̄tu , d̄tv ]

min [d̄tu , d̄tv ]
, (1)

where d̄tu and d̄tv are the average degrees of nodes of the
types tu and tv respectively.

A large value of D(r) indicates quite inequivalent struc-
tural roles of two types of nodes connected via the relation
r (one-centered-by-another), while a small value of D(r)
means compatible structural roles (peer-to-peer). In other
words, relations with a large value of D(r) show much
stronger affiliation relationships. Nodes connected via such
relations share much more similar properties (Faust 1997).
While relations with a small value of D(r) implicate much
stronger interaction relationships. Therefore, we call the two
categories of relations as Affiliation Relations (ARs) and In-
teraction Relations (IRs), respectively.

In order to better understand the structural difference be-
tween various relations, we take the DBLP network as an
example. As shown in Table 1, for the relation PC with



D(PC) = 718.8, the average degree of nodes with type
P is 1.0 while that of nodes with type C is 718.8. It shows
that papers and conferences are structurally inequivalent. Pa-
pers are centered by conferences. While D(AP ) = 1.1 in-
dicates that authors and papers are compatible and peer-to-
peer in structure. This is consistent with our common sense.
Semantically, the relation PC means that ‘papers are pub-
lished in conferences’, indicating an affiliation relationship.
Differently, AP means that ‘authors write papers’, which ex-
plicitly describes an interaction relationship.

In fact, we can also define some other measures to cap-
ture the structural difference. For example, we compare the
relations in terms of sparsity, which can be defined as:

S(r) =
Nr

Ntu ×Ntv

, (2)

where Nr represents the number of relation instances fol-
lowing r. Ntu and Ntv mean the number of nodes with type
tu and tv , respectively. The measure can also consistently
distinguish the relations into two categories: ARs and IRs.
The detailed statistics of all the relations in the three HINs
are shown in Table 1.

Evidently, Affiliation Relations and Interaction Relations
exhibit rather distinct characteristics: (1) ARs indicate one-
centered-by-another structures, where the average degrees
of the types of end nodes are extremely different. They im-
ply an affiliation relationship between nodes. (2) IRs de-
scribe peer-to-peer structures, where the average degrees of
the types of end nodes are compatible. They suggest an in-
teraction relationship between nodes.

5 Relation Structure-Aware HIN Embedding
In this section, we present a novel Relation structure-aware
HIN Embedding model (RHINE), which individually han-
dles two categories of relations (ARs and IRs) with different
models in order to preserve their distinct structural charac-
teristics, as illustrated in Figure 1(c).

5.1 Basic Idea
Through our exploration with thorough mathematical analy-
sis, we find that the heterogeneous relations can be typically
divided into ARs and IRs with different structural charac-
teristics. In order to respect their distinct characteristics, we
need to specifically design different while appropriate mod-
els for the different categories of relations.

For ARs, we propose to take Euclidean distance as a
metric to measure the proximity of the connected nodes
in the low-dimensional space. There are two motivations
behind this: (1) First of all, ARs show affiliation struc-
tures between nodes, which indicate that nodes connected
via such relations share similar properties. (Faust 1997;
Yang and Leskovec 2012). Hence, nodes connected via ARs
could be directly close to each other in the vector space,
which is also consistent with the optimization of Euclidean
distance (Danielsson 1980). (2) Additionally, one goal of
HIN embedding is to preserve the high-order proximity. Eu-
clidean distance can ensure that both first-order and second-
order proximities are preserved as it meets the condition of
the triangle inequality (Hsieh et al. 2017).

Different from ARs, IRs indicate strong interaction rela-
tionships between compatible nodes, which themselves con-
tain important structural information of two nodes. Thus,
we propose to explicitly model an IR as a translation be-
tween nodes in the low-dimensional vector space. Addition-
ally, the translation based distance is consistent with the
Euclidean distance in the mathematical form (Bordes et al.
2013). Therefore, they can be smoothly combined in a uni-
fied and elegant manner.

5.2 Different Models for ARs and IRs
In this subsection, we introduce two different models ex-
ploited in RHINE for ARs and IRs, respectively.

Euclidean Distance for Affiliation Relations Nodes con-
nected via ARs share similar properties (Faust 1997), there-
fore nodes could be directly close to each other in the vector
space. We take the Euclidean distance as the proximity mea-
sure of two nodes connected by an AR.

Formally, given an affiliation node-relation triple
〈p, s, q〉 ∈ PAR where s ∈ RAR is the relation between p
and q with weight wpq , the distance between p and q in the
latent vector space is calculated as follows:

f(p, q) = wpq||Xp − Xq||22, (3)

in which Xp ∈ Rd and Xq ∈ Rd are the embedding vectors
of p and q, respectively. As f(p, q) quantifies the distance
between p and q in the low-dimensional vector space, we
aim to minimize f(p, q) to ensure that nodes connected by
an AR should be close to each other. Hence, we define the
margin-based loss (Bordes et al. 2013) function as follows:

LEuAR =
∑

s∈RAR

∑
〈p,s,q〉∈PAR∑

〈p′,s,q′〉∈P ′
AR

max[0, γ + f(p, q)− f(p′, q′)],
(4)

where γ > 0 is a margin hyperparameter. PAR is the set of
positive affiliation node-relation triples, while P ′

AR is the set
of negative affiliation node-relation triples.

Translation-based Distance for Interaction Relations
Interaction Relations demonstrate strong interactions be-
tween nodes with compatible structural roles. Thus, different
from ARs, we explicitly model IRs as translations between
nodes.

Formally, given an interaction node-relation triple
〈u, r, v〉 where r ∈ RIR with weight wuv , we define the
score function as:

g(u, v) = wuv||Xu + Yr − Xv||, (5)

where Xu and Xv are the node embeddings of u and v re-
spectively, and Yr is the embedding of the relation r. Intu-
itively, this score function penalizes deviation of (Xu + Yr)
from the vector Xv .

For each interaction node-relation triple 〈u, r, v〉 ∈ PIR,
we define the margin-based loss function as follows:

LTrIR =
∑

r∈RIR

∑
〈u,r,v〉∈PIR∑

〈u′,r,v′〉∈P ′
IR

max[0, γ + g(u, v)− g(u′, v′)]
(6)



where PIR is the set of positive interaction node-relation
triples, while P ′

IR is the set of negative interaction node-
relation triples.

5.3 A Unified Model for HIN Embedding
Finally, we smoothly combine the two models for differ-
ent categories of relations by minimizing the following loss
function:

L = LEuAR + LTrIR (7)

=
∑

s∈RAR

∑
〈p,s,q〉∈PAR

∑
〈p′,s,q′〉∈P ′

AR

max[0, γ + f(p, q)− f(p′, q′)]

+
∑

r∈RIR

∑
〈u,r,v〉∈PIR

∑
〈u′,r,v′〉∈P ′

IR

max[0, γ + g(u, v)− g(u′, v′)]

Sampling Strategy As shown in Table 1, the distributions
of ARs and IRs are quite unbalanced. What’s more, the pro-
portion of relations are unbalanced within ARs and IRs. Tra-
ditional edge sampling may suffer from under-sampling for
relations with a small amount or over-sampling for relations
with a large amount. To address the problems, we draw pos-
itive samples according to their probability distributions. As
for negative samples, we follow previous work (Bordes et
al. 2013) to construct a set of negative node-relation triples
P ′
(u,r,v) = {(u′, r, v)|u′ ∈ V } ∪ {(u, r, v′)|v′ ∈ V } for the

positive node-relation triple (u, r, v), where either the head
or tail is replaced by a random node, but not both at the same
time.

6 Experiments
In this section, we conduct extensive experiments to demon-
strate the effectiveness of our model RHINE.

6.1 Datasets
As described in Subsection 4.1, we conduct experiments
on three datasets, including DBLP, Yelp and AMiner. The
statistics of them are summarized in Table 1.

6.2 Baseline Methods
We compare our proposed model RHINE with six state-of-
the-art network embedding methods.

• DeepWalk (Perozzi, Al-Rfou, and Skiena 2014) per-
forms a random walk on networks and then learns low-
dimensional node vectors via the skip-gram model.

• LINE (Tang et al. 2015) considers first-order and second-
order proximities in networks. We denote the model that
only uses first-order or second-order proximity as LINE-
1st or LINE-2nd, respectively.

• PTE (Tang, Qu, and Mei 2015) decomposes an HIN
to a set of bipartite networks and then learns the low-
dimensional representation of the network.

• ESim (Shang et al. 2016) takes a given set of meta-paths
as input to learn a low-dimensional vector space. For a
fair comparison, we use the same meta-paths with equal
weights in Esim and our model RHINE.

Table 2: Performance Evaluation of Node Clustering.
Methods DBLP Yelp AMiner

DeepWalk 0.3884 0.3043 0.5427
LINE-1st 0.2775 0.3103 0.3736
LINE-2nd 0.4675 0.3593 0.3862

PTE 0.3101 0.3527 0.4089
ESim 0.3449 0.2214 0.3409

HIN2Vec 0.4256 0.3657 0.3948
metapath2vec 0.6065 0.3507 0.5586

RHINE 0.7204 0.3882 0.6024

• HIN2Vec (Fu, Lee, and Lei 2017) learns the latent vectors
of nodes and meta-paths in an HIN by conducting multi-
ple prediction training tasks jointly.

• Metapath2vec (Dong, Chawla, and Swami 2017) lever-
ages meta-path based random walks and skip-gram model
to perform node embedding. We leverage the meta-paths
APCPA, UBSBU and APCPA in DBLP, Yelp and AMiner
respectively, which perform best in the evaluations.

Parameter Settings For a fair comparison, we set the em-
bedding dimension d = 100 and the size of negative samples
k = 3 for all models. For DeepWalk, HIN2Vec and metap-
ath2vec, we set the number of walks per node w = 10, the
walk length l = 100 and the window size τ = 5. For our
model RHINE, the margin γ is set to 1.

6.3 Node Clustering
Experimental Settings We leverage K-means to cluster
the nodes and evaluate the results in terms of normalized
mutual information (NMI) (Shi et al. 2014).

Results As shown in Table 2, our model RHINE signifi-
cantly outperforms all the compared methods. (1) Compared
with the best competitors, the clustering performance of our
model RHINE improves by 18.79%, 6.15% and 7.84% on
DBLP, Yelp and AMiner, respectively. It demonstrates the
effectiveness of our model RHINE by distinguishing the var-
ious relations with different structural characteristics in an
HIN. In addition, it also validates that we utilize appropri-
ate models for different categories of relations. (2) In all
baseline methods, homogeneous network embedding mod-
els achieve the lowest performance, because they ignore the
heterogeneity of relations and nodes. (3) RHINE signifi-
cantly outperforms existing HIN embedding models (i.e.,
ESim, HIN2Vec and metapath2vec) on all datasets. We be-
lieve the reason is that our proposed RHINE with appro-
priate models for different categories of relations can better
capture the structural and semantic information of HINs.

6.4 Link Prediction
Experimental Setting We model the link prediction prob-
lem as a binary classification problem that aims to predict
whether a link exists. In this task, we conduct co-author (A-
A) and author-conference (A-C) link prediction for DBLP
and AMiner. For Yelp, we predict user-business (U-B) links
which indicate whether a user reviews a business. We first



Table 3: Performance Evaluation of Link Prediction.
Methods DBLP (A-A) DBLP (A-C) Yelp (U-B) AMiner (A-A) AMiner (A-C)

AUC F1 AUC F1 AUC F1 AUC F1 AUC F1

DeepWalk 0.9131 0.8246 0.7634 0.7047 0.8476 0.6397 0.9122 0.8471 0.7701 0.7112
LINE-1st 0.8264 0.7233 0.5335 0.6436 0.5084 0.4379 0.6665 0.6274 0.7574 0.6983
LINE-2nd 0.7448 0.6741 0.8340 0.7396 0.7509 0.6809 0.5808 0.4682 0.7899 0.7177

PTE 0.8853 0.8331 0.8843 0.7720 0.8061 0.7043 0.8119 0.7319 0.8442 0.7587
ESim 0.9077 0.8129 0.7736 0.6795 0.6160 0.4051 0.8970 0.8245 0.8089 0.7392

HIN2Vec 0.9160 0.8475 0.8966 0.7892 0.8653 0.7709 0.9141 0.8566 0.8099 0.7282
metapath2vec 0.9153 0.8431 0.8987 0.8012 0.7818 0.5391 0.9111 0.8530 0.8902 0.8125

RHINE 0.9315 0.8664 0.9148 0.8478 0.8762 0.7912 0.9316 0.8664 0.9173 0.8262

Table 4: Performance Evaluation of Multi-class Classification.
Methods DBLP Yelp AMiner

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

DeepWalk 0.7475 0.7500 0.6723 0.7012 0.9386 0.9512
LINE-1st 0.8091 0.8250 0.4872 0.6639 0.9494 0.9569
LINE-2nd 0.7559 0.7500 0.5304 0.7377 0.9468 0.9491

PTE 0.8852 0.8750 0.5389 0.7342 0.9791 0.9847
ESim 0.8867 0.8750 0.6836 0.7399 0.9910 0.9948

HIN2Vec 0.8631 0.8500 0.6075 0.7361 0.9962 0.9965
metapath2vec 0.8976 0.9000 0.5337 0.7208 0.9934 0.9936

RHINE 0.9344 0.9250 0.7132 0.7572 0.9884 0.9807

randomly separate the original network into training net-
work and testing network, where the training network con-
tains 80% relations to be predicted (i.e., A-A, A-C and U-B)
and the testing network contains the rest. Then, we train the
embedding vectors on the training network and evaluate the
prediction performance on the testing network.

Results The results of link prediction task are reported
in Table 3 with respect to AUC and F1 score. It is clear
that our model performs better than all baseline methods on
three datasets. The reason behind the improvement is that
our model based on Euclidean distance modeling relations
can capture both the first-order and second-order proximi-
ties. In addition, our model RHINE distinguishes multiple
types of relations into two categories in terms of their struc-
tural characteristics, and thus can learn better embeddings of
nodes, which are beneficial for predicting complex relation-
ships between two nodes.

6.5 Multi-Class Classification
Experimental Setting In this task, we employ the same
labeled data used in the node clustering task. After learning
the node vectors, we train a logistic classifier with 80% of
the labeled nodes and test with the remaining data. We use
Micro-F1 and Macro-F1 score as the metrics for evaluation
(Dong, Chawla, and Swami 2017).

Results We summarize the results of classification in Ta-
ble 4. As we can observe, (1) RHINE achieves better per-
formance than all baseline methods on all datasets except
Aminer. It improves the performance of node classification

by about 4% on both DBLP and Yelp averagely. In terms
of AMiner, the RHINE performs slightly worse than ESim,
HIN2vec and metapath2vec. This may be caused by over-
capturing the information of relations PR and APR (R rep-
resents references). Since an author may write a paper re-
ferring to various fields, these relations may introduce some
noise. (2) Although ESim and HIN2Vec can model multiple
types of relations in HINs, they fail to perform well in most
cases. Our model RHINE achieves good performance due to
the respect of distinct characteristics of various relations.

6.6 Comparison of Variant Models
In order to verify the effectiveness of distinguishing the
structural characteristics of relations, we design three vari-
ant models based on RHINE as follows:

• RHINEEu leverages Euclidean distance to embed HINs
without distinguishing the relations.

• RHINETr models all nodes and relations in HINs with
translation mechanism, which is just like TransE (Bordes
et al. 2013).

• RHINERe leverages Euclidean distance to model IRs
while translation mechanism for ARs, reversely.

We set the parameters of variant models as the same as those
of our proposed model RHINE. The results of the three tasks
are shown in Figure 2. It is evident that our model outper-
forms RHINEEu and RHINETr, indicating that it is ben-
eficial for learning the representations of nodes by distin-
guishing the heterogeneous relations. Besides, we find that
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Figure 2: Performance Evaluation of Variant Models.
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Figure 3: Visualization of Node Embeddings.

RHINETr achieves better performance than RHINEEu. This
is due to the fact that there are generally more peer-to-peer
relationships (i.e., IRs) in the networks. Directly making all
nodes close to each other leads to much loss of information.
Compared with the reverse model RHINERe, RHINE also
achieves better performance on all tasks, which implies that
two models for ARs and IRs are well designed to capture
their distinctive characteristics.

6.7 Visualization
To understand the representations of the networks intu-
itively, we visualize the vectors of nodes (i.e., papers) in
DBLP learned with DeepWalk, metapath2vec and RHINE
in Figure 3. As we can see, our model clearly clusters the
paper nodes into four groups. It demonstrates that our model
learns superior node embeddings by distinguishing the het-
erogeneous relations in HINs. In contrast, DeepWalk barely
splits papers into different groups. Metapath2vec performs
better than DeepWalk, but the boundary is blurry.

6.8 Parameter Analysis
In order to investigate the influences of different parame-
ters in our model, we evaluate the RHINE in node clustering
task. Specifically, we explore the sensitivity of two parame-
ters, including the number of embedding dimensions and the
number of negative samples. As shown in Figure 4(a), the
performance of our model improves with the increase in the
number of dimensions, and then tends to be stable once the
dimension of the representation reaches around 100. Simi-
larly, Figure 4(b) shows that as the number of negative ex-
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Figure 4: Parameter Analysis.

amples increases, the performance of our model first grows
and then becomes stable when the number reaches 3.

7 Conclusion
In this paper, we make the first attempt to explore and distin-
guish the structural characteristics of relations for HIN em-
bedding. We present two structure-related measures which
can consistently distinguish heterogeneous relations into
two categories: affiliation relations and interaction relations.
To respect the distinctive structures of relations, we pro-
pose a novel relation structure-aware HIN embedding model
(RHINE), which individually handles these two categories
of relations. Experimental results demonstrate that RHINE
outperforms state-of-the-art baselines in various tasks. In the
future, we will explore other possible measures to differen-
tiate relations so that we can better capture the structural in-
formation of HINs. In addition, we will exploit deep neural
network based models for different relations.
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