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| Background Baghirs oMU //A
GNNs
» node-level representation » graph-level representation
hl =U(y;4, X, 2)’
=UpPDATE(h! !, hg = Q(w; H') = READOUT({h}|v € V})
AGGREGATE({(h}™1, hi=t 2,,) : u € o))

Pre-train GNNs

>
0, is pre-trained

without accommodating the adaptation in fine-tuning

0o = arg miny LP7¢( fo; DP€) 01 = 0y — 9V, LT™¢(fo,; D)
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| Motivation

learn how to pre-train GNNs
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» How to narrow the gap caused by different optimization

objectives?
» SOTAs fall into a two-step paradigm with a gap
» Solution: learn to pre-train ( meta learning )

| Challenges

» How to simultaneously preserve node- and graph-level

information?
» SOTAs either only consider the node-level pre-training or require
supervised information for graph-level pre-training
» Solution: intrinsic self-supervision
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Pre-train a GNN model over a graph G € DP"*

» sample sub-structures Dg for training

| Motivation

(the training data of a simulated downstream task)
» mimic the evaluation on testing sub-structures D}E

. . t
0o = argming ) g pore LP7( fomawyrire( fop) PT5,)

/

the fine-tuned parameters
(in a similar manner as the fine-tuning step on the downstream task )



| L2P-GNN

G={V,§ X, 2}

(a) An Example of Graph '
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(b) Task Construction ' (c) Dual Adaptation in Self-supervised Base Model
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Task Construction

| L2P-GNN

Parent Task .

=TT o
. ommaT 9= {yw » the pre-training data
f-._. I Adaptation re __
:H: fonsupportset Dp {gl, gz, ...,gN}
=3 |
e » A task involving a graph
ooy | Cpmmin /5 = (86 9g)
. oo 0 ={y, » gradient descent w.r.t. the loss on
g= {V,g,X, Z} Query Set :___
< z %

> optimize the performance on Qg
» simulating the training and testing
in the fine-tuning step

(a) An Example of Graph ' (b) Task Construction '
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Self-supervised Base Model

» node-level aggregation
Lot (85 = )

feeee Node-level Aggregation ------- e Graph-level Pooling ------- :
U(y; A, X, Z) o Q(w; H) '

(u,v)ESE L // . \\\ :rHjl
;'/ '/ o9 l:__:__’

~n(o(h]h,) ~I(o(-hhy) e dere gTel “
AN ‘),”\'_)/" ,/ i iSupport Set :
: v R S Y :

> graph-level pOOllng )(?)L Node-level losson ... P Graph-level losson ... 5
support / query set support / query set
k

L w7 S5) =)

c=1

- log(0(h; h)) - log(o(~hf ho))

k
ra 1 noae C
L75(0;8g) = LIPM(w; Sg) + A > L% (h; 8§)

c=1
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Backpropagation

Dual Adaptation __________________________ on query set _____________________\I

geeees Node-level Aggregation ------- Lo Graph-level Pooling ------- D
(3 A, X, Z) o O(w; H) '

: 6= ?
» node-level adaptation : “aspaton | |

|
|
I
- - I
. on support set : : H: :
8k  prode(y. gey | | oo "® :
node(,/,. QC 1% o 2 |
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oY 5 o
f Optimization S Node-level losson ... o Graph-level losson ... o
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(c) Dual Adaptation in Self-supervised Base Model

w=w-2

02 geprre £75(0'; Qg)

00—~ 50




| Experiments

» Datasets
Dataset | Biology | PreDBLP
#subgraphs 394,925 |: 1,054,309 ]
#labels 40 | 6 '

#subgraphs for pre-training || 306,925 || 794,862 |
#subgraphs for fine-tuning || 88,000 |\ 299,447 |

» Baselines
» EdgePred to predict the connectivity of node pairs

» DGI to maximize mutual information across the graph’s patch representations
» ContextPred to explore graph structures
» AttrMasking to learn the regularities of node/edge attributes

» GNN Architectures
» GCN, GraphSAGE, GAT, GIN
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Table 2: Experimental results (mean =+ std in percent) of different pre-training strategies w.r.t. various GNN architectures. The
improvements are relative to the respective GNN without pre-training.

Biology PreDBLP

Model

GCN

GraphSAGE

GAT

GIN

GCN

GraphSAGE

GAT

GIN

No pre-train

| 63.22+1.06

65.72+1.23

68.21+£1.26

64.82+1.21

| 62.18+0.43

61.03+0.65

59.63+2.32

69.01+0.23

EdgePred
DGI

ContextPred
AttrMasking

64.72+£1.06
64.33+1.14
64.56+1.36
64.35+£1.23

67.39+£1.54
66.69+0.88
66.31+0.94
64.32+0.78

67.37+1.31
68.37+0.54
66.89+1.98
67.72+1.16

65.93+1.65
65.16+1.24
65.99£1.22
65.72+1.31

65.44+0.42
65.57+0.36
66.11+0.16
65.49+0.52

63.60+0.21
63.34+0.73
62.55+0.11
62.35+0.58

55.56+£1.67
61.30£2.17
58.44+1.18
53.34+4.77

69.43+£0.07
69.34+£0.09
69.371+0.21
68.61+0.16

L2P-GNN
(Improv.)

66.48£1.59

(5.16%)

69.89+£1.63
(6.35%)

69.15£1.86
(1.38%)

70.13-£0.95
(8.19%)

66.58+0.28
(7.08%)

65.84+0.37
(7.88%)

62.24£1.89
(4.38 %)

70.79+0.17
(2.58%)

» 6.27% and 3.52% improvements compared to the best baseline
» 8.19% and 7.88% gains relative to non-pretrained models

» negative transfer harms the generalization of the pre-trained GNNs (e.g.,
EdgePred and AttrMasking strategies w.r.t. GAT)
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| o L2P-GNN 4 ContextPred - AttrMasking -+ DGI 4 EdgePred | B L2P-GNN M ContextPred [ Masking [ DGI M EdgePred |

1 0.8 0.85
2 09 0.6 2 0.74
% 9 é 0.63
5 08 § 0.4 =
é § 0.52
®) @)
0.7 0.2 041
0.6 0 0.3
Layerl  Layer2 Layer3 Layer4 Layer5 Delta Loss Delta RUC-AUC Layerl  Layer2 Layer3 Layer4 Layer5 Delta Loss Delta Micro-F1
Model change Evaluation change Model change Evaluation change
(a) Biology dataset (b) PreDBLP dataset

Comparative Analysis
whether L2P-GNN narrows the gap between pre-training and fine-tuning ?
» Comparation of the pre-trained GNN model before and after fine-tuning
» Centered Kernel Alignment (CKA) similarity between the parameters
» Smaller similarity, larger changes of model parameters
» changes in loss and performance (delta loss and RUC-AUC/Micro-F1)
» Smaller change, more easily achieve the optimal point
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Value

I L2P-GNN-Node
B L2P-GNN-Graph
B L2P-GNN

4 Biology

4 PreDBLP
Biology PreDBLP 0 ¢ 3770 ¢ 50 100 300 500
Dataset Biology PreDBLP Dimension
(a) Ablation study. (b) Node- and graph-level adaptation steps (s, t). (c) Dimension analysis.

» Ablation Study
» L2P-GNN-Node with only node-level adaptation
» L2P-GNN-Graph with only graph-level adaptation

» Parameter Analysis
» the number of node- and graph-level adaptation steps (s, t)
» the dimension of node representations
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» A problem
» there exists a divergence between the pre-training and fine-tuning
objectives, resulting in suboptimal pre-trained GNN models

» A solution
» a self-supervised pretraining strateqy for GNNs, L2P-GNN, which
attempts to learn how to fine-tune during the pre-training process in the
form of transferable prior knowledge

»A dataset
» a new large-scale graph structured data for pre-training GNNs
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Codes and datasets: https://github.com/rootlu/L2P-GNN
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